LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF‐κB activation

[1]  A. Cashikar,et al.  Multivesicular body morphogenesis. , 2012, Annual review of cell and developmental biology.

[2]  R. Morse Chromatin Remodeling , 2012, Methods in Molecular Biology.

[3]  N. Raab-Traub,et al.  Human tumor virus utilizes exosomes for intercellular communication , 2010, Proceedings of the National Academy of Sciences.

[4]  M. Caplan,et al.  Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling , 2010, The Journal of cell biology.

[5]  L. Staudt Oncogenic activation of NF-kappaB. , 2010, Cold Spring Harbor perspectives in biology.

[6]  M. Caplan,et al.  Exosome‐release of beta‐catenin: A novel mechanism to antagonize Wnt signaling , 2010 .

[7]  T. D. de Gruijl,et al.  Functional delivery of viral miRNAs via exosomes , 2010, Proceedings of the National Academy of Sciences.

[8]  Jan Delabie,et al.  Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma , 2010, Nature.

[9]  G. Cagney,et al.  HIV Nef is Secreted in Exosomes and Triggers Apoptosis in Bystander CD4+ T Cells , 2010, Traffic.

[10]  S. Temme,et al.  The Herpes Simplex Virus-1 Encoded Glycoprotein B Diverts HLA-DR into the Exosome Pathway , 2009, The Journal of Immunology.

[11]  D. Thorley-Lawson,et al.  Germinal Center B Cells Latently Infected with Epstein-Barr Virus Proliferate Extensively but Do Not Increase in Number , 2009, Journal of Virology.

[12]  V. Steimle,et al.  Sorting of MHC Class II Molecules into Exosomes through a Ubiquitin‐Independent Pathway , 2009, Traffic.

[13]  C. Melief,et al.  MHC II in Dendritic Cells is Targeted to Lysosomes or T Cell‐Induced Exosomes Via Distinct Multivesicular Body Pathways , 2009, Traffic.

[14]  A. Brech,et al.  Multivesicular Endosome Biogenesis in the Absence of ESCRTs , 2009, Traffic.

[15]  W. Zwart,et al.  Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7–RILP–p150Glued and late endosome positioning , 2009, The Journal of cell biology.

[16]  T. Ketas,et al.  HIV-1 evades virus-specific IgG2 and IgA class switching by targeting systemic and intestinal B cells via long-range intercellular conduits , 2009, Nature Immunology.

[17]  Judith Klumperman,et al.  Trafficking and function of the tetraspanin CD63. , 2009, Experimental cell research.

[18]  M. Rowe,et al.  Cyclical Expression of EBV Latent Membrane Protein 1 in EBV-Transformed B Cells Underpins Heterogeneity of Epitope Presentation and CD8+ T Cell Recognition1 , 2009, The Journal of Immunology.

[19]  D. Thorley-Lawson,et al.  The Intersection of Epstein-Barr Virus with the Germinal Center , 2009, Journal of Virology.

[20]  R. Lüllmann-Rauch,et al.  Deficiency of the Tetraspanin CD63 Associated with Kidney Pathology but Normal Lysosomal Function , 2008, Molecular and Cellular Biology.

[21]  Jaap M Middeldorp,et al.  Multiple roles of LMP1 in Epstein-Barr virus induced immune escape. , 2008, Seminars in cancer biology.

[22]  K. Rajewsky,et al.  Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-κB pathway and promotes lymphomagenesis , 2008, The Journal of experimental medicine.

[23]  E. Baba,et al.  B cell activation regulates exosomal HLA production , 2008, European journal of immunology.

[24]  B. Sugden,et al.  The latent membrane protein 1 oncogene modifies B-cell physiology by regulating autophagy , 2008, Oncogene.

[25]  E. Cesarman,et al.  EBV LMP2A affects LMP1-mediated NF-kappaB signaling and survival of lymphoma cells by regulating TRAF2 expression. , 2008, Blood.

[26]  Petra Schwille,et al.  Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes , 2008, Science.

[27]  B. Sugden,et al.  The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. , 2008, Blood.

[28]  Ralph Weissleder,et al.  A secreted luciferase for ex vivo monitoring of in vivo processes , 2008, Nature Methods.

[29]  E. Cesarman,et al.  EBV LMP 2 A affects LMP 1-mediated NF-B signaling and survival of lymphoma cells by regulating TRAF 2 expression , 2008 .

[30]  R. Piper,et al.  Biogenesis and function of multivesicular bodies. , 2007, Annual review of cell and developmental biology.

[31]  A. Muntasell,et al.  T cell‐induced secretion of MHC class II–peptide complexes on B cell exosomes , 2007, The EMBO journal.

[32]  S. Ceccarelli,et al.  Epstein‐Barr virus latent membrane protein 1 promotes concentration in multivesicular bodies of fibroblast growth factor 2 and its release through exosomes , 2007, International journal of cancer.

[33]  Y. Shimizu,et al.  A New Diagnostic Marker for Secreted Epstein-Barr Virus–Encoded LMP1 and BARF1 Oncoproteins in the Serum and Saliva of Patients with Nasopharyngeal Carcinoma , 2007, Clinical Cancer Research.

[34]  J. Luzio,et al.  Ubiquitin-dependent sorting of integral membrane proteins for degradation in lysosomes. , 2007, Current opinion in cell biology.

[35]  B. Sugden,et al.  A Membrane Leucine Heptad Contributes to Trafficking, Signaling, and Transformation by Latent Membrane Protein 1 , 2007, Journal of Virology.

[36]  R. Longnecker,et al.  Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. , 2007, Virology.

[37]  E. Kieff,et al.  Constitutive CD40 signaling phenocopies the transforming function of the Epstein-Barr virus oncoprotein LMP1 in vitro. , 2007, Leukemia research.

[38]  M. Hirashima,et al.  Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral Latent Membrane Protein 1 and the immunomodulatory protein galectin 9 , 2006, BMC Cancer.

[39]  C. Boucheix,et al.  Membrane microdomains and proteomics: Lessons from tetraspanin microdomains and comparison with lipid rafts , 2006, Proteomics.

[40]  Yu-Sun Chang,et al.  PRA1 promotes the intracellular trafficking and NF‐κB signaling of EBV latent membrane protein 1 , 2006, The EMBO journal.

[41]  E. Kieff,et al.  LMP1 Transmembrane Domain 1 and 2 (TM1-2) FWLY Mediates Intermolecular Interactions with TM3-6 To Activate NF-κB , 2006, Journal of Virology.

[42]  M. Foti,et al.  Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. , 2006, The Journal of cell biology.

[43]  J. Neefjes,et al.  The Journal of Cell Biology , 2002 .

[44]  G. Bornkamm,et al.  EBV latency III immortalization program sensitizes B cells to induction of CD95-mediated apoptosis via LMP1: role of NF-kappaB, STAT1, and p53. , 2006, Blood.

[45]  N. Raab-Traub,et al.  LMP1 signaling and activation of NF-kappaB in LMP1 transgenic mice. , 2006, Oncogene.

[46]  M. Hemler Tetraspanin functions and associated microdomains , 2005, Nature Reviews Molecular Cell Biology.

[47]  Longxing Wei,et al.  Distribution and phenotype of Epstein–Barr virus-infected cells in human pharyngeal tonsils , 2005, Modern Pathology.

[48]  W. Zwart,et al.  Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. , 2005, Immunity.

[49]  D. Thorley-Lawson,et al.  Persistence of the Epstein-Barr virus and the origins of associated lymphomas. , 2004, The New England journal of medicine.

[50]  E. Kieff,et al.  Latent infection membrane protein transmembrane FWLY is critical for intermolecular interaction, raft localization, and signaling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  G. Raposo,et al.  Lipid raft-associated protein sorting in exosomes. , 2003, Blood.

[52]  R. Khanna,et al.  Proteasomal targeting of a viral oncogene abrogates oncogenic phenotype and enhances immunogenicity. , 2003, Blood.

[53]  E. Kieff,et al.  Epstein–Barr virus latent membrane protein 1 activation of NF-κB through IRAK1 and TRAF6 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. Bonifacino,et al.  Signals for sorting of transmembrane proteins to endosomes and lysosomes. , 2003, Annual review of biochemistry.

[55]  Jaap M Middeldorp,et al.  Localization of the Epstein-Barr virus protein LMP 1 to exosomes. , 2003, The Journal of general virology.

[56]  B. Sugden,et al.  LMP1, a viral relative of the TNF receptor family, signals principally from intracellular compartments , 2003, The EMBO journal.

[57]  W. Hammerschmidt,et al.  Latent membrane protein 1 is critical for efficient growth transformation of human B cells by epstein-barr virus. , 2003, Cancer research.

[58]  E. V. van Donselaar,et al.  Recycling Compartments and the Internal Vesicles of Multivesicular Bodies Harbor Most of the Cholesterol Found in the Endocytic Pathway , 2003, Traffic.

[59]  J. Slot,et al.  Proteomic and Biochemical Analyses of Human B Cell-derived Exosomes , 2003, The Journal of Biological Chemistry.

[60]  Jennifer M. Martin,et al.  Transmembrane Domains 1 and 2 of the Latent Membrane Protein 1 of Epstein-Barr Virus Contain a Lipid Raft Targeting Signal and Play a Critical Role in Cytostasis , 2003, Journal of Virology.

[61]  Ulrich Siebenlist,et al.  Constitutive Nuclear Factor κB Activity Is Required for Survival of Activated B Cell–like Diffuse Large B Cell Lymphoma Cells , 2001, The Journal of experimental medicine.

[62]  D. Thorley-Lawson,et al.  Epstein-Barr virus: exploiting the immune system , 2001, Nature Reviews Immunology.

[63]  A. Kaykas,et al.  CD40 and LMP‐1 both signal from lipid rafts but LMP‐1 assembles a distinct, more efficient signaling complex , 2001, The EMBO journal.

[64]  E. Kieff,et al.  Epstein–Barr virus latent-infection membrane proteins are palmitoylated and raft-associated: Protein 1 binds to the cytoskeleton through TNF receptor cytoplasmic factors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  H. Kwon,et al.  Hostile takeovers: viral appropriation of the NF-kB pathway , 2001 .

[66]  H. Kwon,et al.  Hostile takeovers: viral appropriation of the NF-kappaB pathway. , 2001, The Journal of clinical investigation.

[67]  D. Thorley-Lawson,et al.  Tonsillar memory B cells, latently infected with Epstein-Barr virus, express the restricted pattern of latent genes previously found only in Epstein-Barr virus-associated tumors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Ciechanover,et al.  Degradation of the Epstein-Barr Virus Latent Membrane Protein 1 (LMP1) by the Ubiquitin-Proteasome Pathway , 2000, The Journal of Biological Chemistry.

[69]  E. Bloemena,et al.  Direct Immunosuppressive Effects of EBV-Encoded Latent Membrane Protein 1 , 2000, The Journal of Immunology.

[70]  E. Kieff,et al.  NF-kappa B inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[71]  E. Bloemena,et al.  Restricted low-level human antibody responses against Epstein-Barr virus (EBV)-encoded latent membrane protein 1 in a subgroup of patients with EBV-associated diseases. , 1999, The Journal of infectious diseases.

[72]  J. Neefjes,et al.  Multivesicular body morphogenesis requires phosphatidyl-inositol 3-kinase activity , 1999, Current Biology.

[73]  H. Geuze,et al.  Selective Enrichment of Tetraspan Proteins on the Internal Vesicles of Multivesicular Endosomes and on Exosomes Secreted by Human B-lymphocytes* , 1998, The Journal of Biological Chemistry.

[74]  D. Liebowitz Epstein-Barr virus and a cellular signaling pathway in lymphomas from immunosuppressed patients. , 1998, The New England journal of medicine.

[75]  M. Ueffing,et al.  Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule , 1997, The EMBO journal.

[76]  J. Neefjes,et al.  Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface , 1996, The Journal of cell biology.

[77]  M. Rowe,et al.  Cytostatic effect of Epstein-Barr virus latent membrane protein-1 analyzed using tetracycline-regulated expression in B cell lines. , 1996, Virology.

[78]  C. Melief,et al.  B lymphocytes secrete antigen-presenting vesicles , 1996, The Journal of experimental medicine.

[79]  R. Flavell,et al.  Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes , 1994, The Journal of experimental medicine.

[80]  B Sugden,et al.  Transformation by the oncogenic latent membrane protein correlates with its rapid turnover, membrane localization, and cytoskeletal association , 1991, Journal of virology.

[81]  U. Nater,et al.  Epstein-Barr virus. , 1991, The Journal of family practice.

[82]  W. Hammerschmidt,et al.  The transforming domain alone of the latent membrane protein of Epstein-Barr virus is toxic to cells when expressed at high levels , 1989, Journal of virology.

[83]  D. Thorley-Lawson,et al.  Posttranslational processing of the Epstein-Barr virus-encoded p63/LMP protein , 1987, Journal of virology.

[84]  V. Baichwal,et al.  Posttranslational processing of an Epstein-Barr virus-encoded membrane protein expressed in cells transformed by Epstein-Barr virus , 1987, Journal of virology.

[85]  E. Kieff,et al.  An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells , 1985, Cell.