Improved achromatization of phase mask coronagraphs using colored apodization

Context. For direct imaging of exoplanets, a stellar coronagraph helps to remove the image of an observed bright star by attenuating the diffraction effects caused by the telescope aperture of diameter D. The dual zone phase mask (DZPM) coronagraph constitutes a promising concept since it theoretically offers a small inner working angle (IWA similar to lambda(0)/D where lambda(0) denotes the central wavelength of the spectral range Delta lambda), good achromaticity, and high starlight rejection, typically reaching a 10(6) contrast at 5 lambda(0)/D from the star over a spectral bandwidth Delta lambda/lambda(0) of 25% (similar to H-band). This last value proves to be encouraging for broadband imaging of young and warm Jupiter-like planets. Aims. Contrast levels higher than 10(6) are, however, required for observing older and/or less massive companions over a finite spectral bandwidth. An achromatization improvement of the DZPM coronagraph is therefore mandatory to reach such good performance. Methods. In its design, the DZPM coronagraph uses a gray (or achromatic) apodization. We replaced it by a colored apodization to increase the performance of this coronagraphic system over a wide spectral range. This innovative concept, called colored apodizer phase mask (CAPM) coronagraph, is defined to reach the highest contrast in the exoplanet search area. Once this has been done, we study the performance of the CAPM coronagraph in the presence of different errors to evaluate the sensitivity of our concept. Results. A 2.5 mag contrast gain is estimated from the performance provided by the CAPM coronagraph with respect to that of the DZPM coronagraph. A 2.2 x 10(-8) intensity level at 5 lambda(0)/D separation is then theoretically achieved with the CAPM coronagraph in the presence of a clear circular aperture and a 25% bandwidth. In addition, our studies show that our concept is less sensitive to low than to high-order aberrations for a given value of rms wavefront errors.

[1]  C. Aime Principle of an Achromatic Prolate Apodized Lyot Coronagraph , 2005 .

[2]  L M Mugnier,et al.  On-line long-exposure phase diversity: a powerful tool for sensing quasi-static aberrations of extreme adaptive optics imaging systems. , 2008, Optics express.

[3]  R. Vanderbei,et al.  Fast computation of Lyot-style coronagraph propagation. , 2007, Optics express.

[4]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[5]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[6]  R. Soummer,et al.  APODIZED PUPIL LYOT CORONAGRAPHS FOR ARBITRARY APERTURES. III. QUASI-ACHROMATIC SOLUTIONS , 2011 .

[7]  Kunjithapatham Balasubramanian Band-limited image plane masks for the Terrestrial Planet Finder coronagraph: materials and designs for broadband performance. , 2008, Applied optics.

[8]  Erkin Sidick Requirements on optical density and phase dispersion of imperfect band-limited occulting masks in a broadband coronagraph. , 2007, Applied optics.

[9]  Mikko Ritala,et al.  Atomic layer deposition (ALD): from precursors to thin film structures , 2002 .

[10]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[11]  A. Labeyrie,et al.  The Four-Quadrant Phase-Mask Coronagraph. I. Principle , 2000 .

[12]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[13]  Pierre Baudoz,et al.  The four-quadrant phase-mask coronagraph : white light laboratory results with an achromatic device , 2006 .

[14]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[15]  Kjetil Dohlen,et al.  Exoplanet characterization with long slit spectroscopy , 2008 .

[16]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[17]  S. Ridgway,et al.  Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs , 2006, astro-ph/0608506.

[18]  L. Abe,et al.  Apodized Lyot coronagraph for SPHERE/VLT , 2011 .

[19]  O. Guyon Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging , 2003, astro-ph/0301190.

[20]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[21]  C. Aime,et al.  Achromatic dual-zone phase mask stellar coronagraph , 2003 .

[22]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[23]  Roman Duplov Apochromatic telescope without anomalous dispersion glasses. , 2006, Applied optics.

[24]  R. Soummer Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures , 2004, astro-ph/0412221.

[25]  D. Mawet,et al.  Annular Groove Phase Mask Coronagraph , 2005 .

[26]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[27]  T. Fusco,et al.  Comparison of coronagraphs for high-contrast imaging in the context of extremely large telescopes , 2008, 0809.2876.

[28]  H. Macleod,et al.  Thin-Film Optical Filters , 1969 .

[29]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. III. Diffraction Effects and Coronagraph Design , 2006 .

[30]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[31]  Russell B. Makidon,et al.  Low-Order Aberrations in Band-limited Lyot Coronagraphs , 2005, astro-ph/0507539.

[32]  P. Baudoz,et al.  Achromatic interfero coronagraphy I. Theoretical capabilities for ground-based observations , 2000 .

[33]  Stuart B. Shaklan,et al.  Low-Order Aberration Sensitivity of Eighth-Order Coronagraph Masks , 2005 .

[34]  Marc J. Kuchner,et al.  EIGHTH-ORDER IMAGE MASKS FOR TERRESTRIAL PLANET FINDING , 2005 .

[35]  Marcel Carbillet,et al.  Apodized Lyot coronagraph for SPHERE/VLT: II. Laboratory tests and performance , 2011 .

[36]  C. Aime,et al.  Total coronagraphic extinction of rectangular apertures using linear prolate apodizations , 2002 .

[37]  Ben R. Oppenheimer,et al.  High-Contrast Observations in Optical and Infrared Astronomy , 2009 .

[38]  F. Roddier,et al.  STELLAR CORONOGRAPH WITH PHASE MASK , 1997 .

[39]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[40]  R. Soummer,et al.  HIGH PERFORMANCE PIAA CORONAGRAPHY WITH COMPLEX AMPLITUDE FOCAL PLANE MASKS , 2010 .

[41]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronograph. II. Performance , 2006 .

[42]  Robert J. Vanderbei,et al.  Diffraction-based Sensitivity Analysis of Apodized Pupil-mapping Systems , 2006 .

[43]  C. Aime,et al.  Stellar coronagraphy with prolate apodized circular apertures , 2003 .

[44]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[45]  Kjetil Dohlen,et al.  Experimental results with a second-generation Roddier & Roddier phase mask coronagraph , 2010 .

[46]  M. Tamura,et al.  An Eight-Octant Phase-Mask Coronagraph , 2008 .

[47]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .