Influence of absorption on quantitative analysis in Raman spectroscopy

[1]  B. Weckhuysen,et al.  Real time quantitative Raman spectroscopy of supported metal oxide catalysts without the need of an internal standard. , 2005, Physical chemistry chemical physics : PCCP.

[2]  Zili Wu,et al.  On the structure of vanadium oxide supported on aluminas: UV and visible raman spectroscopy, UV-visible diffuse reflectance spectroscopy, and temperature-programmed reduction studies. , 2005, The journal of physical chemistry. B.

[3]  B. Weckhuysen,et al.  Envisaging the physicochemical processes during the preparation of supported catalysts: Raman microscopy on the impregnation of Mo onto Al2O3 extrudates. , 2004, Journal of the American Chemical Society.

[4]  M. Pelletier,et al.  Quantitative Analysis Using Raman Spectrometry , 2003, Applied spectroscopy.

[5]  P. Stair,et al.  An ultraviolet Raman spectroscopic study of coke formation in methanol to hydrocarbons conversion over zeolite H-MFI , 2003 .

[6]  H. Knözinger,et al.  Time‐resolved in situ Raman spectroscopy of working catalysts: sulfated and tungstated zirconia , 2002 .

[7]  M. Bañares,et al.  Molecular structures of supported metal oxide catalysts under different environments , 2002 .

[8]  P. Stair,et al.  A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts , 2001 .

[9]  Q. Xin,et al.  Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy , 2001 .

[10]  P. Stair,et al.  A Novel Fluidized Bed Technique for Measuring UV Raman Spectra of Catalysts and Adsorbates , 2000 .

[11]  G. Mestl In situ Raman spectroscopy — a valuable tool to understand operating catalysts , 2000 .

[12]  Q. Xin,et al.  Coke formation during the methanol conversion to olefins in zeolites studied by UV Raman spectroscopy , 2000 .

[13]  H. Knözinger,et al.  Laser Raman spectroscopy – a powerful tool for in situ studies of catalytic materials , 1999 .

[14]  M. Bonner Denton,et al.  Quantitative analysis using Raman spectroscopy without spectral standardization , 1999 .

[15]  I. Wachs In situ Raman spectroscopy studies of catalysts , 1999 .

[16]  Yukihiro Ozaki,et al.  Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer , 1996 .

[17]  P. Stair,et al.  An advance in Raman studies of catalysts: Ultraviolet resonance Raman spectroscopy , 1996 .

[18]  David N. Waters,et al.  Raman spectroscopy of powders : effects of light absorption and scattering , 1994 .

[19]  N. Everall Quantitative study of self‐absorption in near‐infrared Fourier transform Raman spectroscopy , 1994 .

[20]  Andreas Hoffmann,et al.  Near-infrared Fourier transform Raman spectroscopy : facing absorption and background , 1991 .

[21]  M. Mehicic,et al.  Practical Raman Spectroscopy : Springer Verlag, Berlin, 1989 (ISBN 3-540-50254-8). viii + 157 pp. Price DM 78.00 , 1990 .

[22]  T. Vickers,et al.  Correction for Absorption in Raman Measurements Using the Backscattering Geometry , 1989 .

[23]  S. Asher,et al.  Self-Absorption in Resonance Raman and Rayleigh Scattering: A Numerical Solution , 1988 .

[24]  T. Vickers,et al.  Feasibility of Quantitative UV Resonance Raman Spectroscopy with a KrF Excimer Laser , 1987 .

[25]  John P. Baltrus,et al.  Quantitative Raman spectrometric determination of molybdenum trioxide and tungsten trioxide in supported catalysts , 1985 .

[26]  Shirley S. Chan,et al.  Relative raman cross-sections of tungsten oxides: [WO3, Al2(WO4)3 and WO3Al2O3] , 1984 .

[27]  K. Klier Reflectance Spectroscopy as a Tool for Investigating Dispersed Solids and Their Surfaces , 1968 .

[28]  G. Bergmann,et al.  Die Intensität des Ramanspektrums polykristalliner Substanzen , 1967 .