A New History Matching Sensitivity Analysis Framework with Random Forests and Plackett-Burman Design

[1]  Daein Jeong,et al.  Quantification of Uncertainty of Reserves with High Quality History Matching Models in a Mature Field , 2014 .

[2]  Rodrigo Weber dos Santos,et al.  Genetic Algorithm for the History Matching Problem , 2013, ICCS.

[3]  Alexander Hapfelmeier,et al.  Variable selection by Random Forests using data with missing values , 2014, Comput. Stat. Data Anal..

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  Jon C. Helton,et al.  Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models , 2009, Reliab. Eng. Syst. Saf..

[6]  U. Grömping Dependence of Variable Importance in Random Forests on the Shape of the Regressor Space , 2009 .

[7]  Markus Krosche,et al.  Hybrid Optimization coupling EnKF and Evolutionary Algorithms for History Matching: A Case Example , 2009 .

[8]  Edgar M. Palmer,et al.  On the number of trees in a random forest , 1979, J. Comb. Theory B.

[9]  R. Schulze-Riegert,et al.  Evolutionary Algorithms Applied to History Matching of Complex Reservoirs , 2002 .

[10]  Laurent Heutte,et al.  Dynamic Random Forests , 2012, Pattern Recognit. Lett..

[11]  Jean-Michel Poggi,et al.  Variable selection using random forests , 2010, Pattern Recognit. Lett..

[12]  Akmal Aulia,et al.  Strategic Well Test Planning Using Random Forest , 2014 .

[13]  David W. Corne,et al.  A parallel BOA-PSO hybrid algorithm for history matching , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[14]  Alexander Hapfelmeier,et al.  A new variable selection approach using Random Forests , 2013, Comput. Stat. Data Anal..

[15]  Douglas M. Hawkins,et al.  Plackett–Burman technique for sensitivity analysis of many-parametered models , 2001 .

[16]  Mojdeh Delshad,et al.  Application and variance based sensitivity analysis of surfactant-polymer flooding using modified chemical flood predictive model , 2011 .

[17]  Larry W. Lake,et al.  Sensitivity Analyses of Production and Recovery Forecasts Using Variance-Based Methods , 2008 .