Microbial genes and pathways in inflammatory bowel disease

[1]  A. Bernabé-Ortiz,et al.  A systematic review of population-based studies on lipid profiles in Latin America and the Caribbean , 2020, eLife.

[2]  C. Brensinger,et al.  A Diet Low in Red and Processed Meat Does Not Reduce Rate of Crohn's Disease Flares. , 2019, Gastroenterology.

[3]  Kevin S. Bonham,et al.  Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases , 2019, Nature.

[4]  R. Xavier,et al.  Clinical and biological predictors of response to standardised paediatric colitis therapy (PROTECT): a multicentre inception cohort study , 2019, The Lancet.

[5]  S. Targan,et al.  Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. , 2019, Cell host & microbe.

[6]  Wael Elhenawy,et al.  Host-Specific Adaptive Diversification of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. , 2019, Cell host & microbe.

[7]  J. Stelling,et al.  Microbial network disturbances in relapsing refractory Crohn’s disease , 2019, Nature Medicine.

[8]  D. Gevers,et al.  Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and ROR&ggr;t+ Regulatory T Cells and Exacerbate Colitis in Mice , 2019, Immunity.

[9]  Alexander N. Levy,et al.  Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease , 2019, Therapeutic advances in gastroenterology.

[10]  D. Plichta,et al.  A defined commensal consortium elicits CD8 T cells and anti-cancer immunity , 2019, Nature.

[11]  Morris A. Swertz,et al.  Gut microbiota composition and functional changes in inflammatory bowel disease and irritable bowel syndrome , 2018, Science Translational Medicine.

[12]  Eric A. Franzosa,et al.  Gut microbiome structure and metabolic activity in inflammatory bowel disease , 2018, Nature Microbiology.

[13]  J. Doré,et al.  Fecal chromogranins and secretogranins are linked to the fecal and mucosal intestinal bacterial composition of IBS patients and healthy subjects , 2018, Scientific Reports.

[14]  C. Huttenhower,et al.  Compositional and Temporal Changes in the Gut Microbiome of Pediatric Ulcerative Colitis Patients Are Linked to Disease Course. , 2018, Cell host & microbe.

[15]  A. Bendelac,et al.  IgA Responses to Microbiota. , 2018, Immunity.

[16]  Jonathan R. Brestoff,et al.  Tropism for tuft cells determines immune promotion of norovirus pathogenesis , 2018, Science.

[17]  P. Schloss,et al.  Fecal Microbiota Signatures Are Associated with Response to Ustekinumab Therapy among Crohn’s Disease Patients , 2018, mBio.

[18]  M. Daly,et al.  C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions , 2018, Science.

[19]  A. Kurilshikov,et al.  Environment dominates over host genetics in shaping human gut microbiota , 2018, Nature.

[20]  D. Gevers,et al.  Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. , 2018, Cell host & microbe.

[21]  M. Sabater,et al.  Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota , 2018, The ISME Journal.

[22]  Michael Y. Gerner,et al.  Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism , 2018, Nature.

[23]  D. McGovern,et al.  CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi , 2018, Science.

[24]  C. Huttenhower,et al.  Dynamics of metatranscription in the inflammatory bowel disease gut microbiome , 2018, Nature Microbiology.

[25]  Andrew Y. Koh,et al.  Precision editing of the gut microbiota ameliorates colitis , 2018, Nature.

[26]  Nima Hamidi,et al.  Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies , 2017, The Lancet.

[27]  Mark S. Sundrud,et al.  The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids , 2017, Immunity.

[28]  J. Clemente,et al.  Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. , 2017, Gastroenterology.

[29]  Kyle Bittinger,et al.  A role for bacterial urease in gut dysbiosis and Crohn’s disease , 2017, Science Translational Medicine.

[30]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[31]  M. Yassour,et al.  A novel Ruminococcus gnavus clade enriched in inflammatory bowel disease patients , 2017, Genome Medicine.

[32]  J. Segre,et al.  Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation , 2017, Science.

[33]  R. Amann,et al.  Uncultivated microbes in need of their own taxonomy , 2017, The ISME Journal.

[34]  Eric A. Franzosa,et al.  Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. , 2017, Cell host & microbe.

[35]  T. Vatanen,et al.  Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children , 2017, Proceedings of the National Academy of Sciences.

[36]  Hailiang Huang,et al.  Fine-mapping inflammatory bowel disease loci to single variant resolution , 2017, Nature.

[37]  Judy H. Cho,et al.  Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study , 2017, The Lancet.

[38]  M. Kamm,et al.  Faecal Microbiota Transplantation for Inflammatory Bowel Disease: A Systematic Review and Meta-analysis , 2017, Journal of Crohn's & colitis.

[39]  Ashwin N Ananthakrishnan,et al.  Gut Microbiome Function Predicts Response to Anti-integrin Biologic Therapy in Inflammatory Bowel Diseases. , 2017, Cell host & microbe.

[40]  S. Ng,et al.  The Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21 st Century: A Systematic Review of Population-Based Studies , 2017 .

[41]  Ryan M. O’Connell,et al.  A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice , 2017, Science Translational Medicine.

[42]  L. Lichtenstein,et al.  P478 The current place of probiotics in treatment of pouchitis: systematic review. , 2017, Journal of Crohn's & colitis.

[43]  S. Duncan,et al.  Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics , 2017, The ISME Journal.

[44]  C. Huttenhower,et al.  Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease , 2016, Gut.

[45]  W. D. de Vos,et al.  Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease , 2016, Journal of Crohn's & colitis.

[46]  T. Vatanen,et al.  Increased Intestinal Microbial Diversity Following Fecal Microbiota Transplant for Active Crohn's Disease , 2016, Inflammatory bowel diseases.

[47]  A. Levin,et al.  Neonatal gut microbiota associates with childhood multi–sensitized atopy and T–cell differentiation , 2016, Nature Medicine.

[48]  T. Vatanen,et al.  Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease , 2016, Genome Medicine.

[49]  F. Bäckhed,et al.  Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. , 2016, Cell metabolism.

[50]  Paul M. Ruegger,et al.  A Disease-Associated Microbial and Metabolomics State in Relatives of Pediatric Inflammatory Bowel Disease Patients , 2016, Cellular and molecular gastroenterology and hepatology.

[51]  A. Gasbarrini,et al.  Gut Virome and Inflammatory Bowel Disease , 2016, Inflammatory bowel diseases.

[52]  D. McKay,et al.  Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages. , 2016, American journal of physiology. Gastrointestinal and liver physiology.

[53]  R. Xavier,et al.  CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands , 2016, Nature Medicine.

[54]  Eric A. Franzosa,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2016, Cell.

[55]  Morris A. Swertz,et al.  Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity , 2016, Science.

[56]  J. Raes,et al.  Donor Species Richness Determines Faecal Microbiota Transplantation Success in Inflammatory Bowel Disease. , 2016, Journal of Crohn's & colitis.

[57]  J. Segre,et al.  Signaling in Host-Associated Microbial Communities , 2016, Cell.

[58]  Hugues Aschard,et al.  Fungal microbiota dysbiosis in IBD , 2016, Gut.

[59]  K. Mitsuyama,et al.  Antibody markers in the diagnosis of inflammatory bowel disease. , 2016, World journal of gastroenterology.

[60]  Loubna Abdel Hadi,et al.  Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces , 2016, Mediators of inflammation.

[61]  I. Amit,et al.  Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling , 2015, Cell.

[62]  F. Ghishan,et al.  T Lymphocyte Dynamics in Inflammatory Bowel Diseases: Role of the Microbiome , 2015, BioMed research international.

[63]  Eric Z. Chen,et al.  Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease. , 2015, Cell host & microbe.

[64]  M. Hattori,et al.  Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells , 2015, Cell.

[65]  Tobias Kollmann,et al.  Early infancy microbial and metabolic alterations affect risk of childhood asthma , 2015, Science Translational Medicine.

[66]  Eran Segal,et al.  Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples , 2015, Science.

[67]  M. Kleerebezem,et al.  Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon , 2015, Proceedings of the National Academy of Sciences.

[68]  M. Fischbach,et al.  Small molecules from the human microbiota , 2015, Science.

[69]  A. Meloni,et al.  Gastrointestinal Autoimmunity Associated With Loss of Central Tolerance to Enteric α-Defensins. , 2015, Gastroenterology.

[70]  Michael A. Fischbach,et al.  A biosynthetic pathway for a prominent class of microbiota-derived bile acids , 2015, Nature chemical biology.

[71]  E. Zoetendal,et al.  Fecal Microbiota in Pediatric Inflammatory Bowel Disease and Its Relation to Inflammation , 2015, The American Journal of Gastroenterology.

[72]  V. Tremaroli,et al.  Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. , 2015, Cell host & microbe.

[73]  R. Baldassano,et al.  Diet in the pathogenesis and treatment of inflammatory bowel diseases. , 2015, Gastroenterology.

[74]  Martin von Bergen,et al.  Dysbiotic gut microbiota causes transmissible Crohn's disease-like ileitis independent of failure in antimicrobial defence , 2015, Gut.

[75]  Rustem F. Ismagilov,et al.  Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis , 2015, Cell.

[76]  P. Gibson,et al.  Dietary management of IBD—insights and advice , 2015, Nature Reviews Gastroenterology &Hepatology.

[77]  S. Grivennikov,et al.  Cytokines, IBD, and Colitis-associated Cancer , 2015, Inflammatory bowel diseases.

[78]  Jenny Sauk,et al.  Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease , 2015, Cell.

[79]  J. Wardle,et al.  Sleep and nighttime energy consumption in early childhood: a population‐based cohort study , 2015, Pediatric obesity.

[80]  Meghan A. Wallace,et al.  Vertically transmitted fecal IgA levels distinguish extra-chromosomal phenotypic variation , 2014, Nature.

[81]  B. Weimer,et al.  Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. , 2014, Cell host & microbe.

[82]  Andrew H. Van Benschoten,et al.  Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. , 2014, Cell host & microbe.

[83]  Judy H. Cho,et al.  Immunoglobulin A Coating Identifies Colitogenic Bacteria in Inflammatory Bowel Disease , 2014, Cell.

[84]  Sandhya Kortagere,et al.  Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll‐like Receptor 4 , 2014, Immunity.

[85]  M. Martinez-Medina,et al.  Escherichia coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia coli pathogenicity. , 2014, World journal of gastrointestinal pathophysiology.

[86]  C. Mackay,et al.  Diet, metabolites, and "western-lifestyle" inflammatory diseases. , 2014, Immunity.

[87]  K. Hase,et al.  Gut microbiota-generated metabolites in animal health and disease. , 2014, Nature chemical biology.

[88]  C. Huttenhower,et al.  Relating the metatranscriptome and metagenome of the human gut , 2014, Proceedings of the National Academy of Sciences.

[89]  L. Ursell,et al.  The intestinal metabolome: an intersection between microbiota and host. , 2014, Gastroenterology.

[90]  G. Wu,et al.  Diet and the intestinal microbiome: associations, functions, and implications for health and disease. , 2014, Gastroenterology.

[91]  Se Jin Song,et al.  The treatment-naive microbiome in new-onset Crohn's disease. , 2014, Cell host & microbe.

[92]  S. Zeissig,et al.  Sphingolipids from a Symbiotic Microbe Regulate Homeostasis of Host Intestinal Natural Killer T Cells , 2014, Cell.

[93]  J. Petrosino,et al.  Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders , 2013, Cell.

[94]  M. Tomita,et al.  Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells , 2013, Nature.

[95]  W. Willett,et al.  A prospective study of long-term intake of dietary fiber and risk of Crohn's disease and ulcerative colitis. , 2013, Gastroenterology.

[96]  A. Ebringer,et al.  The Role of Klebsiella in Crohn's Disease with a Potential for the Use of Antimicrobial Measures , 2013, International journal of rheumatology.

[97]  A. Kaser,et al.  Paneth cells as a site of origin for intestinal inflammation , 2013, Nature.

[98]  P. Bork,et al.  Richness of human gut microbiome correlates with metabolic markers , 2013, Nature.

[99]  A. De Luca,et al.  Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. , 2013, Immunity.

[100]  Anders F. Andersson,et al.  Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by Caesarean section , 2013, Gut.

[101]  M. Yanagisawa,et al.  Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. , 2013, Gastroenterology.

[102]  M. Hattori,et al.  Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota , 2013, Nature.

[103]  Fredrik H. Karlsson,et al.  Gut metagenome in European women with normal, impaired and diabetic glucose control , 2013, Nature.

[104]  S. Hazen,et al.  Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. , 2013, The New England journal of medicine.

[105]  Liang Zheng,et al.  Succinate is an inflammatory signal that induces IL-1β through HIF-1α , 2013, Nature.

[106]  F. Bushman,et al.  Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis , 2013, Nature Medicine.

[107]  Sanjai J. Parikh,et al.  Host-Derived Nitrate Boosts Growth of E. coli in the Inflamed Gut , 2013, Science.

[108]  Philip Rosenstiel,et al.  NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. , 2013, The Journal of clinical investigation.

[109]  S. Coffin,et al.  Antibiotic Exposure and IBD Development Among Children: A Population-Based Cohort Study , 2012, Pediatrics.

[110]  Qiang Feng,et al.  A metagenome-wide association study of gut microbiota in type 2 diabetes , 2012, Nature.

[111]  Timothy L. Tickle,et al.  Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment , 2012, Genome Biology.

[112]  M. Blaser,et al.  Antibiotics in early life alter the murine colonic microbiome and adiposity , 2012, Nature.

[113]  Katherine H. Huang,et al.  Structure, Function and Diversity of the Healthy Human Microbiome , 2012, Nature.

[114]  R. Siebert,et al.  Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function , 2012, Science.

[115]  F. Bäckhed,et al.  Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling , 2012, Nature.

[116]  J. Schulzke,et al.  Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics , 2012, The Journal of physiology.

[117]  Rodney D. Newberry,et al.  Goblet cells deliver luminal antigen to CD103+ DCs in the small intestine , 2012, Nature.

[118]  Richard A. Flavell,et al.  Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity , 2012, Nature.

[119]  Michael A Fischbach,et al.  Eating for two: how metabolism establishes interspecies interactions in the gut. , 2011, Cell host & microbe.

[120]  Richard A. Flavell,et al.  NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis , 2011, Cell.

[121]  Brian J. Bennett,et al.  Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease , 2011, Nature.

[122]  K. Honda,et al.  Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species , 2011, Science.

[123]  C. Fernández-Rodríguez,et al.  Environmental risk factors in inflammatory bowel diseases. Investigating the hygiene hypothesis: A Spanish case–control study , 2010, Scandinavian journal of gastroenterology.

[124]  Maria Karlsson,et al.  Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. , 2010, Cell host & microbe.

[125]  Dror Berel,et al.  Fucosyltransferase 2 (FUT2) non-secretor status is associated with Crohn's disease. , 2010, Human molecular genetics.

[126]  R. Xavier,et al.  Virus-Plus-Susceptibility Gene Interaction Determines Crohn's Disease Gene Atg16L1 Phenotypes in Intestine , 2010, Cell.

[127]  S. Mazmanian,et al.  Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota , 2010, Proceedings of the National Academy of Sciences.

[128]  R. Knight,et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns , 2010, Proceedings of the National Academy of Sciences.

[129]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[130]  G. Weinstock,et al.  Enteric defensins are essential regulators of intestinal microbial ecology , 2009, Nature Immunology.

[131]  Annaïg Lan,et al.  The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. , 2009, Immunity.

[132]  A. Sivignon,et al.  Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM , 2009, The Journal of experimental medicine.

[133]  J. Jansson,et al.  Metabolomics Reveals Metabolic Biomarkers of Crohn's Disease , 2009, PloS one.

[134]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[135]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[136]  Harry Sokol,et al.  Analysis of bacterial bowel communities of IBD patients: What has it revealed? , 2008, Inflammatory bowel diseases.

[137]  Wendy S. Garrett,et al.  Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System , 2007, Cell.

[138]  Jean-Frederic Colombel,et al.  Adherent-invasive Escherichia coli in inflammatory bowel disease , 2007, Gut.

[139]  H. Szajewska,et al.  Meta‐analysis: enteral nutrition in active Crohn’s disease in children , 2007, Alimentary pharmacology & therapeutics.

[140]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[141]  R. Xavier,et al.  Unravelling the pathogenesis of inflammatory bowel disease , 2007, Nature.

[142]  E. Mutius Allergies, infections and the hygiene hypothesis--the epidemiological evidence. , 2007 .

[143]  K. Van Steen,et al.  New serological markers in inflammatory bowel disease are associated with complicated disease behaviour , 2007, Gut.

[144]  A. Griffiths,et al.  Enteral nutritional therapy for induction of remission in Crohn's disease. , 2007, The Cochrane database of systematic reviews.

[145]  W. Sandborn,et al.  Review article: biological activity markers in inflammatory bowel disease , 2006, Alimentary pharmacology & therapeutics.

[146]  Shadi Sepehri,et al.  High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease , 2006, Gut.

[147]  F. Shanahan,et al.  Culture-Independent Analyses of Temporal Variation of the Dominant Fecal Microbiota and Targeted Bacterial Subgroups in Crohn's Disease , 2006, Journal of Clinical Microbiology.

[148]  U. Gophna,et al.  Differences between Tissue-Associated Intestinal Microfloras of Patients with Crohn's Disease and Ulcerative Colitis , 2006, Journal of Clinical Microbiology.

[149]  Z. Halpern,et al.  Antibodies against laminaribioside and chitobioside are novel serologic markers in Crohn's disease. , 2006, Gastroenterology.

[150]  J. Meijerink,et al.  Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. , 2006, Gastroenterology.

[151]  S. Cucchiara,et al.  Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease , 2006, Gut.

[152]  H. Lochs,et al.  Spatial Organization and Composition of the Mucosal Flora in Patients with Inflammatory Bowel Disease , 2005, Journal of Clinical Microbiology.

[153]  D. Rampton,et al.  Molecular Characterization of Rectal Mucosa‐Associated Bacterial Flora in Inflammatory Bowel Disease , 2005, Inflammatory bowel diseases.

[154]  H. Blottière,et al.  Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. , 2004, American journal of physiology. Gastrointestinal and liver physiology.

[155]  K. Wilson,et al.  Ribosomal DNA Sequence Analysis of Mucosa-Associated Bacteria in Crohn’s Disease , 2004, Inflammatory bowel diseases.

[156]  J. Hampe,et al.  Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease , 2004, Gut.

[157]  C. Schultsz,et al.  The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. , 1999, Gastroenterology.

[158]  K. Wilson,et al.  Differential Induction of Colitis and Gastritis in HLA-B27 Transgenic Rats Selectively Colonized with Bacteroides vulgatus or Escherichia coli , 1999, Infection and Immunity.

[159]  V. Godfrey,et al.  IL-2-deficient mice raised under germfree conditions develop delayed mild focal intestinal inflammation. , 1999, American journal of physiology. Gastrointestinal and liver physiology.

[160]  R. Sartor,et al.  Resident Enteric Bacteria Are Necessary for Development of Spontaneous Colitis and Immune System Activation in Interleukin-10-Deficient Mice , 1998, Infection and Immunity.

[161]  R. Haggitt,et al.  Mucosal biopsy diagnosis of colitis: acute self-limited colitis and idiopathic inflammatory bowel disease. , 1994, Gastroenterology.

[162]  D. Podolsky Inflammatory bowel disease (Second of two parts) , 1991 .

[163]  N. Narula,et al.  Enteral nutritional therapy for induction of remission in Crohn's disease. , 2018, The Cochrane database of systematic reviews.

[164]  Tatsuki Koyama,et al.  Alterations in lipid, amino acid, and energy metabolism distinguish Crohn’s disease from ulcerative colitis and control subjects by serum metabolomic profiling , 2017, Metabolomics.

[165]  R. Monteiro,et al.  IgA, IgA receptors, and their anti-inflammatory properties. , 2014, Current topics in microbiology and immunology.

[166]  A. Macpherson The Role of the Microbiome , 2014 .

[167]  R. Xavier,et al.  Genetic variants synthesize to produce paneth cell phenotypes that define subtypes of Crohn's disease. , 2014, Gastroenterology.

[168]  E. Szigethy,et al.  Inflammatory bowel disease. , 2011, Pediatric clinics of North America.

[169]  Manfred Dietel,et al.  Mucosal flora in inflammatory bowel disease. , 2002, Gastroenterology.