Markers of early progressive renal decline in type 2 diabetes suggest different implications for etiological studies and prognostic tests development.

[1]  A. Galecki,et al.  Improved clinical trial enrollment criterion to identify patients with diabetes at risk of end-stage renal disease. , 2017, Kidney international.

[2]  J. Skupień,et al.  Fast renal decline to end-stage renal disease: an unrecognized feature of nephropathy in diabetes. , 2017, Kidney international.

[3]  S. Hadjadj,et al.  Association of Circulating Biomarkers (Adrenomedullin, TNFR1, and NT-proBNP) With Renal Function Decline in Patients With Type 2 Diabetes: A French Prospective Cohort , 2016, Diabetes Care.

[4]  Michael L. Johnson,et al.  Regression coefficient-based scoring system should be used to assign weights to the risk index. , 2016, Journal of clinical epidemiology.

[5]  J. Skupień,et al.  Patterns of Estimated Glomerular Filtration Rate Decline Leading to End-Stage Renal Disease in Type 1 Diabetes , 2016, Diabetes Care.

[6]  Mark R Segal,et al.  Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients With Stable Coronary Heart Disease. , 2016, JAMA.

[7]  D. Webb,et al.  Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. , 2016, Kidney international.

[8]  Merlin C. Thomas,et al.  Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease , 2016, Nature Reviews Nephrology.

[9]  K. Shedden,et al.  Tissue transcriptome-driven identification of epidermal growth factor as a chronic kidney disease biomarker , 2015, Science Translational Medicine.

[10]  F. Agakov,et al.  Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. , 2015, Kidney international.

[11]  J. Skupień,et al.  Increased plasma Kidney Injury Molecule-1 suggests early progressive renal decline in non-proteinuric patients with Type 1 diabetes , 2015, Kidney international.

[12]  A. Krolewski Progressive Renal Decline: The New Paradigm of Diabetic Nephropathy in Type 1 Diabetes , 2015, Diabetes Care.

[13]  T. Mayadas,et al.  TNF receptors: signaling pathways and contribution to renal dysfunction. , 2015, Kidney international.

[14]  P. D. De Jager,et al.  Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. , 2014, Journal of the American Society of Nephrology : JASN.

[15]  P. Ditonno,et al.  Emerging Urinary Markers of Renal Injury in Obstructive Nephropathy , 2014, BioMed research international.

[16]  J. Coresh,et al.  Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. , 2014, JAMA.

[17]  T. Meyer,et al.  Uremic solutes and risk of end stage renal disease in type 2 diabetes , 2014, Kidney international.

[18]  J. Skupień,et al.  Early Progressive Renal Decline Precedes the Onset of Microalbuminuria and Its Progression to Macroalbuminuria , 2013, Diabetes Care.

[19]  A. McMahon,et al.  Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. , 2013, The Journal of clinical investigation.

[20]  H. Erdjument-Bromage,et al.  NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease. , 2012, Kidney international.

[21]  J. Skupień,et al.  The early decline in renal function in patients with type 1 diabetes and proteinuria predicts the risk of end stage renal disease , 2012, Kidney international.

[22]  Jian-Kang Chen,et al.  Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury , 2012, Kidney international.

[23]  T. Mayadas,et al.  Circulating TNF receptors 1 and 2 predict ESRD in type 2 diabetes. , 2012, Journal of the American Society of Nephrology : JASN.

[24]  M. Palermo,et al.  Chemokine receptor CCR1 disruption limits renal damage in a murine model of hemolytic uremic syndrome. , 2012, The American journal of pathology.

[25]  P. Mattei,et al.  An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. , 2011, Kidney international.

[26]  C. Pusey,et al.  Urinary monocyte chemoattractant protein-1 (MCP-1) and connective tissue growth factor (CCN2) as prognostic markers for progression of diabetic nephropathy. , 2009, Cytokine.

[27]  C. Schmid,et al.  A new equation to estimate glomerular filtration rate. , 2009, Annals of internal medicine.

[28]  D. Bolignano,et al.  Pathological and Prognostic Value of Urinary Neutrophil Gelatinase-Associated Lipocalin in Macroproteinuric Patients with Worsening Renal Function , 2008, Kidney and Blood Pressure Research.

[29]  Joseph V Bonventre,et al.  Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. , 2008, The Journal of clinical investigation.

[30]  G. Tesch MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. , 2008, American journal of physiology. Renal physiology.

[31]  F. Mattace-Raso,et al.  The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. , 2008, Kidney international.

[32]  Peasad Devarajan Neutrophil gelatinase‐associated lipocalin (NGAL): A new marker of kidney disease , 2008, Scandinavian journal of clinical and laboratory investigation. Supplementum.

[33]  F. Kronenberg,et al.  Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. , 2007, Journal of the American Society of Nephrology : JASN.

[34]  J. Weinberg,et al.  Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. , 2007, Journal of the American Society of Nephrology : JASN.

[35]  R. Schnellmann,et al.  Requirement of the epidermal growth factor receptor in renal epithelial cell proliferation and migration. , 2004, American journal of physiology. Renal physiology.

[36]  Yasunori Iwata,et al.  Gene therapy via blockade of monocyte chemoattractant protein-1 for renal fibrosis. , 2004, Journal of the American Society of Nephrology : JASN.

[37]  P. Puri,et al.  Epidermal growth factor and monocyte chemotactic peptide-1 expression in reflux nephropathy. , 2003, European urology.

[38]  J. Fei,et al.  MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. , 2002, Journal of the American Society of Nephrology : JASN.

[39]  J Crowley,et al.  Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. , 1999, Statistics in medicine.

[40]  L. Gesualdo,et al.  Urinary IL-6/EGF ratio: a useful prognostic marker for the progression of renal damage in IgA nephropathy. , 1996, Kidney international.

[41]  G. Gearin,et al.  Effect of duration of type I diabetes on the prevalence of stages of diabetic nephropathy defined by urinary albumin/creatinine ratio. , 1996, Journal of the American Society of Nephrology : JASN.

[42]  J. Messana,et al.  Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. , 1989, The Journal of clinical investigation.

[43]  J. M. Mullin,et al.  Epidermal growth factor-induced mitogenesis in kidney epithelial cells (LLC-PK1). , 1988, Cancer research.

[44]  A. Bohle,et al.  Kidney function and protein excretion in relation to pathomorphology of glomerular diseases. , 1988, Contributions to nephrology.

[45]  S. Satchell,et al.  Diabetic nephropathy. , 2012, Clinical medicine.

[46]  Yang Qiu,et al.  US Renal Data System 2010 Annual Data Report. , 2011, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[47]  J. Stockman,et al.  A New Equation to Estimate Glomerular Filtration Rate , 2011 .

[48]  G. Wolf,et al.  The role of chemokines and chemokine receptors in diabetic nephropathy. , 2008, Frontiers in bioscience : a journal and virtual library.

[49]  志水 英明 Anti-monocyte chemoattractant protein-1 gene therapy attenuates renal injury induced by protein-overload proteinuria , 2004 .

[50]  G. Remuzzi,et al.  Understanding the nature of renal disease progression. , 1997, Kidney international.

[51]  C. Mackenzie,et al.  A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. , 1987, Journal of chronic diseases.

[52]  K. Matsushima,et al.  J Am Soc Nephrol 14: 2503–2515, 2003 CCR2 Signaling Contributes to Ischemia-Reperfusion Injury , 2022 .

[53]  Y. Yuzawa,et al.  J Am Soc Nephrol 14: 1496–1505, 2003 Anti-Monocyte Chemoattractant Protein-1 Gene Therapy Attenuates Renal Injury Induced by Protein-Overload , 2022 .