Sharp Oracle Inequalities for Aggregation of Affine Estimators
暂无分享,去创建一个
[1] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[2] E. George. Combining Minimax Shrinkage Estimators , 1986 .
[3] E. George. Minimax Multiple Shrinkage Estimation , 1986 .
[4] Yoav Freund,et al. Boosting a weak learning algorithm by majority , 1995, COLT '90.
[5] D. Donoho,et al. Minimax Risk Over Hyperrectangles, and Implications , 1990 .
[6] I. Johnstone,et al. Ideal spatial adaptation by wavelet shrinkage , 1994 .
[7] A. Kneip. Ordered Linear Smoothers , 1994 .
[8] I. Johnstone,et al. Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .
[9] Sam Efromovich,et al. SHARP-OPTIMAL AND ADAPTIVE ESTIMATION FOR HETEROSCEDASTIC NONPARAMETRIC REGRESSION , 1996 .
[10] Sam Efromovich,et al. On nonparametric regression for IID observations in a general setting , 1996 .
[11] Yali Amit,et al. Shape Quantization and Recognition with Randomized Trees , 1997, Neural Computation.
[12] J. Polzehl,et al. Adaptive weights smoothing with applications to image restoration , 1998 .
[13] P. Massart,et al. Risk bounds for model selection via penalization , 1999 .
[14] Yuhong Yang. REGRESSION WITH MULTIPLE CANDIDATE MODELS: SELECTING OR MIXING? , 1999 .
[15] Manfred K. Warmuth,et al. Averaging Expert Predictions , 1999, EuroCOLT.
[16] T. Cai. Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .
[17] Arkadi Nemirovski,et al. Topics in Non-Parametric Statistics , 2000 .
[18] A. Juditsky,et al. Functional aggregation for nonparametric regression , 2000 .
[19] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[20] Yuhong Yang. Combining Different Procedures for Adaptive Regression , 2000, Journal of Multivariate Analysis.
[21] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[22] John Shawe-Taylor,et al. PAC-Bayes & Margins , 2002, NIPS.
[23] A. Tsybakov,et al. Sharp adaptation for inverse problems with random noise , 2002 .
[24] A. Tsybakov,et al. Oracle inequalities for inverse problems , 2002 .
[25] Alexandre B. Tsybakov,et al. Optimal Rates of Aggregation , 2003, COLT.
[26] Nello Cristianini,et al. Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..
[27] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[28] David A. McAllester. Some PAC-Bayesian Theorems , 1998, COLT' 98.
[29] Yuhong Yang. Aggregating regression procedures to improve performance , 2004 .
[30] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[31] Jean-Michel Morel,et al. A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..
[32] A. Tsybakov,et al. Linear and convex aggregation of density estimators , 2006, math/0605292.
[33] Gábor Lugosi,et al. Prediction, learning, and games , 2006 .
[34] Yishay Mansour,et al. Improved second-order bounds for prediction with expert advice , 2006, Machine Learning.
[35] G. Lecu'e. Optimal rates of aggregation in classification under low noise assumption , 2006, math/0603447.
[36] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[37] Andrew R. Barron,et al. Information Theory and Mixing Least-Squares Regressions , 2006, IEEE Transactions on Information Theory.
[38] Arnak S. Dalalyan,et al. Aggregation by Exponential Weighting and Sharp Oracle Inequalities , 2007, COLT.
[39] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[40] Karim Lounici. Generalized mirror averaging and D-convex aggregation , 2007 .
[41] Jean-Yves Audibert,et al. Progressive mixture rules are deviation suboptimal , 2007, NIPS.
[42] Christophe Giraud,et al. Mixing Least-Squares Estimators when the Variance is Unknown , 2007, 0711.0372.
[43] Universal pointwise selection rule in multivariate function estimation , 2008, 0811.2649.
[44] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[45] Arnak S. Dalalyan,et al. Aggregation by exponential weighting, sharp oracle inequalities and sparsity , 2008 .
[46] L. Cavalier. Nonparametric statistical inverse problems , 2008 .
[47] A. Juditsky,et al. Nonparametric Denoising of Signals with Unknown Local Structure, I: Oracle Inequalities , 2008, 0809.0814.
[48] Arnak S. Dalalyan,et al. Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity , 2008, Machine Learning.
[49] Francis R. Bach,et al. Data-driven calibration of linear estimators with minimal penalties , 2009, NIPS.
[50] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[51] Jean-Yves Audibert. Fast learning rates in statistical inference through aggregation , 2007, math/0703854.
[52] Arnak S. Dalalyan,et al. Sparse Regression Learning by Aggregation and Langevin Monte-Carlo , 2009, COLT.
[53] Philippe Rigollet,et al. Kullback-Leibler aggregation and misspecified generalized linear models , 2009, 0911.2919.
[54] Joseph Salmon,et al. NL-Means and aggregation procedures , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).
[55] Sylvie Huet,et al. Estimator selection in the Gaussian setting , 2010, 1007.2096.
[56] Yu. Golubev. On universal oracle inequalities related to high-dimensional linear models , 2010, 1011.2378.
[57] A. Tsybakov,et al. Exponential Screening and optimal rates of sparse estimation , 2010, 1003.2654.
[58] Arnak S. Dalalyan,et al. Competing against the Best Nearest Neighbor Filter in Regression , 2011, ALT.
[59] N. Hengartner,et al. Recursive bias estimation for multivariate regression smoothers , 2011 .
[60] Tong Zhang,et al. Greedy Model Averaging , 2011, NIPS.
[61] Karim Lounici,et al. Pac-Bayesian Bounds for Sparse Regression Estimation with Exponential Weights , 2010, 1009.2707.
[62] Arnak S. Dalalyan,et al. Optimal aggregation of affine estimators , 2011, COLT.
[63] Sandra Paterlini,et al. Adaptive Minimax Estimation over Sparse l q-Hulls , 2011, 1108.1961.
[64] Sébastien Gerchinovitz,et al. Sparsity Regret Bounds for Individual Sequences in Online Linear Regression , 2011, COLT.
[65] Stéphane Gaïffas,et al. Hyper-Sparse Optimal Aggregation , 2009, J. Mach. Learn. Res..
[66] A. Tsybakov,et al. Sparse Estimation by Exponential Weighting , 2011, 1108.5116.
[67] Tong Zhang,et al. Deviation Optimal Learning using Greedy Q-aggregation , 2012, ArXiv.
[68] Arnak S. Dalalyan,et al. Mirror averaging with sparsity priors , 2010, 1003.1189.
[69] S. Mendelson,et al. On the optimality of the aggregate with exponential weights for low temperatures , 2013, 1303.5180.