Ictal Epileptiform Activity Is Facilitated by Hippocampal GABAA Receptor-Mediated Oscillations

The cellular and network mechanisms of the transition of brief interictal discharges to prolonged seizures are a crucial issue in epilepsy. Here we used hippocampal slices exposed to ACSF containing 0 Mg2+ to explore mechanisms for the transition to prolonged (3–42 sec) seizure-like (“ictal”) discharges. Epileptiform activity, evoked by Shaffer collateral stimulation, triggered prolonged bursts in CA1, in 50–60% of slices, from both adult and young (postnatal day 13–21) rats. In these cases the first component of the CA1 epileptiform burst was followed by a train of population spikes at frequencies in the γ band and above (30–120 Hz, reminiscent of tetanically evoked γ oscillations). The γ burst in turn could be followed by slower repetitive “tertiary” bursts. Intracellular recordings from CA1 during the γ phase revealed long depolarizations, action potentials rising from brief apparent hyperpolarizations, and a drop of input resistance. The CA1 γ rhythm was completely blocked by bicuculline (10–50 μm), by ethoxyzolamide (100 μm), and strongly attenuated in hyperosmolar perfusate (50 mm sucrose). Subsequent tertiary bursts were also blocked by bicuculline, ethoxyzolamide, and in hyperosmolar perfusate. In all these cases intracellular recordings from CA3 revealed only short depolarizations. We conclude that under epileptogenic conditions, γ band oscillations arise from GABAAergic depolarizations and that this activity may lead to the generation of ictal discharges.

[1]  D. Prince,et al.  Control mechanisms in cortical epileptogenic foci. "Surround" inhibition. , 1967, Archives of neurology.

[2]  H. Korn,et al.  Electrical field effect interactions in the vertebrate brain , 1980, Trends in Neurosciences.

[3]  P. Schwartzkroin,et al.  Local circuit synaptic interactions in hippocampal brain slices , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[5]  C. Elger,et al.  Penicillin-induced epileptic foci in the motor cortex: vertical inhibition. , 1983, Electroencephalography and clinical neurophysiology.

[6]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[7]  F. Dudek,et al.  Synchronization without active chemical synapses during hippocampal afterdischarges. , 1984, Journal of neurophysiology.

[8]  J. Jefferys,et al.  Low‐calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. , 1984, The Journal of physiology.

[9]  M. Mayer,et al.  Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones , 1984, Nature.

[10]  Wilkie A. Wilson,et al.  Magnesium-free medium activates seizure-like events in the rat hippocampal slice , 1986, Brain Research.

[11]  R. Miles,et al.  Excitatory synaptic interactions between CA3 neurones in the guinea‐pig hippocampus. , 1986, The Journal of physiology.

[12]  R. D. Traub,et al.  Models of the cellular mechanism underlying propagation of epileptiform activity in the CA2-CA3 region of the hippocampal slice , 1987, Neuroscience.

[13]  I. Módy,et al.  Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. , 1987, Journal of neurophysiology.

[14]  R. Traub,et al.  The initiation and spread of epileptiform bursts in thein vitro hippocampal slice , 1987, Neuroscience.

[15]  J. Hablitz Spontaneous ictal-like discharges and sustained potential shifts in the developing rat neocortex. , 1987, Journal of neurophysiology.

[16]  Y. Ben-Ari,et al.  Giant synaptic potentials in immature rat CA3 hippocampal neurones. , 1989, The Journal of physiology.

[17]  F. Dudek,et al.  Osmolality-induced changes in extracellular volume alter epileptiform bursts independent of chemical synapses in the rat: Importance of non-synaptic mechanisms in hippocampal epileptogenesis , 1990, Neuroscience Letters.

[18]  R. Dingledine,et al.  Regional variation of extracellular space in the hippocampus. , 1990, Science.

[19]  Massimo Avoli,et al.  Low magnesium epileptogenesis in the rat hippocampal slice: electrophysiological and pharmacological features , 1990, Brain Research.

[20]  D. Prince,et al.  Postnatal maturation of the GABAergic system in rat neocortex. , 1991, Journal of neurophysiology.

[21]  Ontogeny of epileptogenesis in the rat hippocampus: a study of the influence of GABAergic inhibition. , 1992, Brain research. Developmental brain research.

[22]  M. Avoli,et al.  4-aminopyridine-induced epileptiform activity and a GABA-mediated long- lasting depolarization in the rat hippocampus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  J. Swann,et al.  The ontogeny of hippocampal local circuits and focal epileptogenesis. , 1992, Epilepsy research. Supplement.

[24]  L. Benardo Recruitment of inhibition by enhanced activation of synaptic NMDA responses in the rat cerebral cortex , 1993, Brain Research.

[25]  D. Coulter,et al.  Generation and propagation of epileptiform discharges in a combined entorhinal cortex/hippocampal slice. , 1993, Journal of neurophysiology.

[26]  A. Lehmenkühler,et al.  Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis , 1993, Neuroscience.

[27]  T. Teyler,et al.  Role of HCO3- ions in depolarizing GABAA receptor-mediated responses in pyramidal cells of rat hippocampus. , 1993, Journal of neurophysiology.

[28]  M. Hines,et al.  Axon terminal hyperexcitability associated with epileptogenesis in vitro. I. Origin of ectopic spikes. , 1993, Journal of neurophysiology.

[29]  Kl Smith,et al.  Localized excitatory synaptic interactions mediate the sustained depolarization of electrographic seizures in developing hippocampus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  R. Traub,et al.  Synaptic and intrinsic conductances shape picrotoxin‐induced synchronized after‐discharges in the guinea‐pig hippocampal slice. , 1993, The Journal of physiology.

[31]  S. Stasheff,et al.  Axon terminal hyperexcitability associated with epileptogenesis in vitro. II. Pharmacological regulation by NMDA and GABAA receptors. , 1993, Journal of neurophysiology.

[32]  P. Saggau,et al.  Spontaneous interictal-like activity originates in multiple areas of the CA2-CA3 region of hippocampal slices. , 1994, Journal of neurophysiology.

[33]  R. Traub,et al.  Enhanced NMDA conductance can account for epileptiform activity induced by low Mg2+ in the rat hippocampal slice. , 1994, The Journal of physiology.

[34]  P. Carlen,et al.  Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  R. Traub,et al.  Erosion of inhibition contributes to the progression of low magnesium bursts in rat hippocampal slices. , 1995, The Journal of physiology.

[36]  R. Traub,et al.  Cellular mechanisms of 4‐aminopyridine‐induced synchronized after‐discharges in the rat hippocampal slice. , 1995, The Journal of physiology.

[37]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[38]  T. Gloveli,et al.  Properties of low Mg2+ induced epileptiform activity in rat hippocampal and entorhinal cortex slices during adolescence. , 1995, Brain research. Developmental brain research.

[39]  H. Luhmann,et al.  Development of excitatory and inhibitory postsynaptic potentials in the rat neocortex. , 1995, Perspectives on developmental neurobiology.

[40]  A Lücke,et al.  Synchronous GABA-Mediated Potentials and Epileptiform Discharges in the Rat Limbic System In Vitro , 1996, The Journal of Neuroscience.

[41]  Y. Koshino,et al.  Activation of GABAergic function necessary for afterdischarge generation in rat hippocampal slices , 1996, Neuroscience Letters.

[42]  M. Ishimatsu,et al.  Synchronous Activity in Locus Coeruleus Results from Dendritic Interactions in Pericoerulear Regions , 1996, The Journal of Neuroscience.

[43]  Cornelius Borck,et al.  On the Structure of Ictal Events in Vitro , 1996, Epilepsia.

[44]  A. N. van den Pol,et al.  Excitatory Actions of GABA after Neuronal Trauma , 1996, The Journal of Neuroscience.

[45]  R. Traub,et al.  A mechanism for generation of long-range synchronous fast oscillations in the cortex , 1996, Nature.

[46]  R. Wong,et al.  Ionic basis of the postsynaptic depolarizing GABA response in hippocampal pyramidal cells. , 1996, Journal of neurophysiology.

[47]  K. Kaila,et al.  Posttetanic excitation mediated by GABA(A) receptors in rat CA1 pyramidal neurons. , 1997, Journal of neurophysiology.

[48]  E J Vigmond,et al.  Mechanisms of electrical coupling between pyramidal cells. , 1997, Journal of neurophysiology.

[49]  R. Traub,et al.  Spatiotemporal patterns of γ frequency oscillations tetanically induced in the rat hippocampal slice , 1997 .

[50]  Y. Ben-Ari,et al.  Operative GABAergic inhibition in hippocampal CA1 pyramidal neurons in experimental epilepsy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. Voipio,et al.  Long-Lasting GABA-Mediated Depolarization Evoked by High-Frequency Stimulation in Pyramidal Neurons of Rat Hippocampal Slice Is Attributable to a Network-Driven, Bicarbonate-Dependent K+ Transient , 1997, The Journal of Neuroscience.

[52]  L. R. Merlin,et al.  Role of group I metabotropic glutamate receptors in the patterning of epileptiform activities in vitro. , 1997, Journal of neurophysiology.

[53]  R. Traub,et al.  Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice. , 1997, The Journal of physiology.

[54]  E J Speckmann,et al.  Spontaneous sharp waves in human neocortical slices excised from epileptic patients. , 1998, Brain : a journal of neurology.

[55]  B. Alger,et al.  Transient suppression of GABAA-receptor-mediated IPSPs after epileptiform burst discharges in CA1 pyramidal cells. , 1998, Journal of neurophysiology.

[56]  R. Traub,et al.  `Dormant' inhibitory neurons: do they exist and what is their functional impact? , 1998, Epilepsy Research.

[57]  C. Elger,et al.  Aggravation of Focal Epileptic Seizures by Antiepileptic Drugs , 1998, Epilepsia.

[58]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[59]  A. Konnerth,et al.  Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity , 1998, Progress in Neurobiology.

[60]  M. Avoli,et al.  Participation of GABAA-mediated inhibition in ictallike discharges in the rat entorhinal cortex. , 1998, Journal of neurophysiology.

[61]  C. Borck,et al.  Seizure-like events in disinhibited ventral slices of adult rat hippocampus. , 1999, Journal of neurophysiology.

[62]  J. Davies,et al.  Blockade of GABA uptake potentiates GABA-induced depolarizations in adult mouse cortical slices , 1999, Neuroscience Letters.

[63]  K. L. Perkins Cl- accumulation does not account for the depolarizing phase of the synaptic GABA response in hippocampal pyramidal cells. , 1999, Journal of neurophysiology.

[64]  M. Avoli,et al.  GABA(B) receptor activation promotes seizure activity in the juvenile rat hippocampus. , 1999, Journal of neurophysiology.

[65]  J. Jefferys,et al.  On the Synchronizing Mechanisms of Tetanically Induced Hippocampal Oscillations , 1999, The Journal of Neuroscience.

[66]  K. Staley,et al.  Modulation of mammalian dendritic GABAA receptor function by the kinetics of Cl− and HCO3− transport , 1999, The Journal of physiology.

[67]  R. Traub,et al.  Fast Oscillations in Cortical Circuits , 1999 .

[68]  Wolf Singer,et al.  Neurobiology: Striving for coherence , 1999, Nature.

[69]  M. Holtkamp,et al.  [Tiagabine and non-convulsive status epilepticus]. , 1999, Der Nervenarzt.

[70]  M. Jennings Cotransport in Rabbit Erythrocytes Analysis of the Rate-limiting Activation and Inactivation Events , 1999 .

[71]  J Voipio,et al.  Pharmacological Isolation of the Synaptic and Nonsynaptic Components of the GABA-Mediated Biphasic Response in Rat CA1 Hippocampal Pyramidal Cells , 1999, The Journal of Neuroscience.

[72]  G. Collingridge,et al.  Regulation of depolarizing GABAA receptor-mediated synaptic potentials by synaptic activation of GABAB autoreceptors in the rat hippocampus , 1999, Neuropharmacology.

[73]  L. R. Merlin Group I mGluR-mediated silent induction of long-lasting epileptiform discharges. , 1999, Journal of neurophysiology.

[74]  K. L. Perkins Cl 2 Accumulation Does Not Account for the Depolarizing Phase of the Synaptic GABA Response in Hippocampal Pyramidal Cells , 1999 .

[75]  K. Kaila,et al.  Synaptic activation of GABAA receptors induces neuronal uptake of Ca2+ in adult rat hippocampal slices. , 1999, Journal of neurophysiology.

[76]  J. Matias Palva,et al.  Fast Network Oscillations in the Newborn Rat HippocampusIn Vitro , 2000, The Journal of Neuroscience.