The MKID Exoplanet Camera for Subaru SCExAO

We present the MKID Exoplanet Camera (MEC), a z through J band (800 - 1400 nm) integral field spectrograph located behind The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) at the Subaru Telescope on Maunakea that utilizes Microwave Kinetic Inductance Detectors (MKIDs) as the enabling technology for high contrast imaging. MEC is the first permanently deployed near-infrared MKID instrument and is designed to operate both as an IFU, and as a focal plane wavefront sensor in a multi-kHz feedback loop with SCExAO. The read noise free, fast time domain information attainable by MKIDs allows for the direct probing of fast speckle fluctuations that currently limit the performance of most high contrast imaging systems on the ground and will help MEC achieve its ultimate goal of reaching contrasts of $10^{-7}$ at 2$\lambda / D$. Here we outline the instrument details of MEC including the hardware, firmware, and data reduction and analysis pipeline. We then discuss MEC's current on-sky performance and end with future upgrades and plans.

[1]  Gordon A. H. Walker,et al.  Speckle Noise and the Detection of Faint Companions , 1999 .

[2]  C. Marois,et al.  Efficient Speckle Noise Attenuation in Faint Companion Imaging , 2000 .

[3]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[4]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[5]  O. Guyon Limits of Adaptive Optics for High-Contrast Imaging , 2005, astro-ph/0505086.

[6]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[7]  C. Marois,et al.  A NEW ALGORITHM FOR POINT SPREAD FUNCTION SUBTRACTION IN HIGH-CONTRAST IMAGING: A DEMONSTRATION WITH ANGULAR DIFFERENTIAL IMAGING , 2007 .

[8]  Etienne Artigau,et al.  A New Algorithm for Point-Spread Function Subtraction in High-Contrast Imaging: A Demonstration with Angular Differential Imaging , 2007, astro-ph/0702697.

[9]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[10]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[11]  Shane Jacobson,et al.  HiCIAO: the Subaru Telescope's new high-contrast coronographic imager for adaptive optics , 2008, Astronomical Telescopes + Instrumentation.

[12]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[13]  Gautam Vasisht,et al.  SPECKLE SUPPRESSION WITH THE PROJECT 1640 INTEGRAL FIELD SPECTROGRAPH , 2010, 1012.4016.

[14]  L. Abe,et al.  Apodized Lyot coronagraph for SPHERE/VLT , 2011 .

[15]  Dan Werthimer,et al.  A readout for large arrays of microwave kinetic inductance detectors. , 2012, The Review of scientific instruments.

[16]  Bruce Bumble,et al.  A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics. , 2012, Optics express.

[17]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[18]  Serge Correia,et al.  DIRECT IMAGING AND SPECTROSCOPY OF A CANDIDATE COMPANION BELOW/NEAR THE DEUTERIUM-BURNING LIMIT IN THE YOUNG BINARY STAR SYSTEM, ROXs 42B , 2013, 1310.4825.

[19]  S. Esposito,et al.  DIFFRACTION-LIMITED VISIBLE LIGHT IMAGES OF ORION TRAPEZIUM CLUSTER WITH THE MAGELLAN ADAPTIVE SECONDARY ADAPTIVE OPTICS SYSTEM (MagAO) , 2013, 1308.4155.

[20]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[21]  B. Bumble,et al.  ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer , 2013, 1306.4674.

[22]  C. A. Grady,et al.  DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504 , 2013, 1307.2886.

[23]  Alexis Carlotti,et al.  Demonstration of vortex coronagraph concepts for on-axis telescopes on the Palomar Stellar Double Coronagraph , 2014, Astronomical Telescopes and Instrumentation.

[24]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[25]  Andrew Serio,et al.  The Gemini Planet Imager: First Light , 2014, 1403.7520.

[26]  Bruce Macintosh,et al.  GPI PSF subtraction with TLOCI: the next evolution in exoplanet/disk high-contrast imaging , 2014, Astronomical Telescopes and Instrumentation.

[27]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[28]  C. Stoughton,et al.  THE ARCONS PIPELINE: DATA REDUCTION FOR MKID ARRAYS , 2015, 1507.05631.

[29]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[30]  Dimitri Mawet,et al.  Speckle nulling wavefront control for Palomar and Keck , 2016, Astronomical Telescopes + Instrumentation.

[31]  Marc Van Droogenbroeck,et al.  Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm , 2016, 1602.08381.

[32]  Richard A Frazin,et al.  Statistical framework for the utilization of simultaneous pupil plane and focal plane telemetry for exoplanet imaging. I. Accounting for aberrations in multiple planes. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  M. Chun,et al.  Keck Planet Imager and Characterizer: concept and phased implementation , 2016, Astronomical Telescopes + Instrumentation.

[34]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[35]  Gautam Vasisht,et al.  Electric field conjugation for ground-based high-contrast imaging: robustness study and tests with the Project 1640 coronagraph , 2017, 1710.06948.

[36]  Olivier Guyon,et al.  Ground-based adaptive optics coronagraphic performance under closed-loop predictive control , 2017, 1712.07189.

[37]  B. Bumble,et al.  Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy. , 2017, Optics express.

[38]  Richard A Frazin,et al.  Efficient, nonlinear phase estimation with the nonmodulated pyramid wavefront sensor. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  Gautam Vasisht,et al.  DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy , 2018, 1803.10420.

[40]  Frantz Martinache,et al.  Characterizing vibrations at the Subaru Telescope for the Subaru coronagraphic extreme adaptive optics instrument , 2018 .

[41]  Paul Szypryt,et al.  MKID digital readout tuning with deep learning , 2018 .

[42]  Julien Lozi,et al.  MagAO-X: project status and first laboratory results , 2018, Astronomical Telescopes + Instrumentation.

[43]  D. Fantinel,et al.  Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 , 2018, Astronomy & Astrophysics.

[44]  Frantz Martinache,et al.  A Chromaticity Analysis and PSF Subtraction Techniques for SCExAO/CHARIS Data , 2019, The Astronomical Journal.

[45]  Timothy D. Brandt,et al.  Stochastic Speckle Discrimination with Time-tagged Photon Lists: Digging below the Speckle Noise Floor , 2019, Publications of the Astronomical Society of the Pacific.

[46]  B. Bumble,et al.  Wide-band parametric amplifier readout and resolution of optical microwave kinetic inductance detectors , 2019, Applied Physics Letters.

[47]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[48]  First Principle Simulator of a Stochastically Varying Image Plane for Photon-counting High Contrast Applications , 2020, 2007.15274.

[49]  B. Mazin,et al.  Flexible Coaxial Ribbon Cable for High-Density Superconducting Microwave Device Arrays , 2020, IEEE Transactions on Applied Superconductivity.