Comparison of different methods for corn LAI estimation over northeastern China

[1]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[2]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[3]  A. Strahler,et al.  Geometric-Optical Bidirectional Reflectance Modeling of a Conifer Forest Canopy , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[4]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[5]  A. Kuusk The Hot Spot Effect in Plant Canopy Reflectance , 1991 .

[6]  Ranga B. Myneni,et al.  Photon-Vegetation Interactions , 1991, Springer Berlin Heidelberg.

[7]  James A. Smith,et al.  LAI inversion using a back-propagation neural network trained with a multiple scattering model , 1993, IEEE Trans. Geosci. Remote. Sens..

[8]  C. Justice,et al.  Development of vegetation and soil indices for MODIS-EOS , 1994 .

[9]  A. Kuusk A Markov chain model of canopy reflectance , 1995 .

[10]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[11]  S. Ustin,et al.  Estimating leaf biochemistry using the PROSPECT leaf optical properties model , 1996 .

[12]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[13]  Ramakrishna R. Nemani,et al.  Measurement and remote sensing of LAI in Rocky Mountain montane ecosystems , 1997 .

[14]  S. T. Gower,et al.  Leaf area index of boreal forests: theory, techniques, and measurements , 1997 .

[15]  H. Mooney,et al.  Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere , 1997, Science.

[16]  Sylvain G. Leblanc,et al.  A four-scale bidirectional reflectance model based on canopy architecture , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  D. Diner,et al.  Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere‐corrected MISR data , 1998 .

[18]  Thomas S. Pagano,et al.  Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..

[19]  Michael T. Manry,et al.  Attributes of neural networks for extracting continuous vegetation variables from optical and radar , 1998 .

[20]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[21]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[22]  N. Gobron,et al.  Designing optimal spectral indices: A feasibility and proof of concept study , 1999 .

[23]  Chein-I Chang,et al.  Unsupervised hyperspectral image analysis with projection pursuit , 2000, IEEE Trans. Geosci. Remote. Sens..

[24]  C. Bacour,et al.  Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. , 2000 .

[25]  R. Myneni,et al.  Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .

[26]  A. Huete,et al.  Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination , 2000 .

[27]  F. M. Danson,et al.  Estimating the stem carbon production of a coniferous forest using an ecosystem simulation model driven by the remotely sensed red edge , 2000 .

[28]  M. Weiss,et al.  Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data , 2002 .

[29]  F. Baret,et al.  Validation of neural net techniques to estimate canopy biophysical variables from remote sensing data , 2002 .

[30]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[31]  S. Leblanc,et al.  Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements , 2002 .

[32]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[33]  S. Liang,et al.  Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model , 2003 .

[34]  Hongliang Fang,et al.  Retrieving leaf area index with a neural network method: simulation and validation , 2003, IEEE Trans. Geosci. Remote. Sens..

[35]  S. Prasher,et al.  Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn , 2003 .

[36]  Yuri Knyazikhin,et al.  Retrieval of canopy biophysical variables from bidirectional reflectance Using prior information to solve the ill-posed inverse problem , 2003 .

[37]  Vladimir M. Krasnopolsky,et al.  Some neural network applications in environmental sciences. Part II: advancing computational efficiency of environmental numerical models , 2003, Neural Networks.

[38]  Martha C. Anderson,et al.  A comparison of empirical and neural network approaches for estimating corn and soybean leaf area index from Landsat ETM+ imagery ☆ , 2004 .

[39]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[40]  P. Gong,et al.  Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping , 2004 .

[41]  Wang Xiu The Study on Hyperspectral Remote Sensing Estimation Models about LAI of Rice , 2004 .

[42]  V. K. Dadhwal,et al.  Comparison of principal component inversion with VI-empirical approach for LAI estimation using simulated reflectance data , 2004 .

[43]  R. Colombo,et al.  Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations , 2004 .

[44]  Maosheng Zhao,et al.  A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production , 2004 .

[45]  S. Liang,et al.  A hybrid inversion method for mapping leaf area index from MODIS data: experiments and application to broadleaf and needleleaf canopies , 2005 .

[46]  Li Kai The modeling of vegetation through leaf area index by means of remote sensing , 2005 .

[47]  Jason A. Cole,et al.  Hyperspectral Remote Sensing and Its Applications , 2005 .

[48]  Handan Çamdevýren,et al.  Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs , 2005 .

[49]  John R. Miller,et al.  Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy , 2005 .

[50]  Y. Knyazikhin,et al.  Validation of Moderate Resolution Imaging Spectroradiometer leaf area index product in croplands of Alpilles, France , 2005 .

[51]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[52]  Eyal Ben-Dor,et al.  Quantitative mapping of the soil rubification process on sand dunes using an airborne hyperspectral sensor , 2006 .

[53]  M. Schlerf,et al.  Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data , 2006 .

[54]  Marta Chiesi,et al.  Integration of multi‐source NDVI data for the estimation of Mediterranean forest productivity , 2006 .

[55]  D. Xie,et al.  LAI inversion algorithm based on directional reflectance kernels. , 2007, Journal of environmental management.

[56]  Niu Shuwen,et al.  Soybean LAI Estimation with In-situ Collected Hyperspectral Data Based on BP-neural Networks , 2007, 2007 3rd International Conference on Recent Advances in Space Technologies.

[57]  R. Houborg,et al.  Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data , 2007 .

[58]  W. Verhoef,et al.  Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data , 2007 .

[59]  K. Soudani,et al.  Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass , 2008 .

[60]  Ralf Jaumann,et al.  Reduction of instrument-dependent noise in hyperspectral image data using the principal component analysis: Applications to Galileo NIMS data , 2008 .

[61]  Kenlo Nishida Nasahara,et al.  Utility of spectral vegetation indices for estimation of light conversion efficiency in coniferous forests in Japan , 2008 .

[62]  A. Skidmore,et al.  Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland , 2008 .

[63]  F. Baret,et al.  Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards , 2009 .

[64]  Paul J. Williams,et al.  Maize kernel hardness classification by near infrared (NIR) hyperspectral imaging and multivariate data analysis. , 2009, Analytica chimica acta.

[65]  F. Jay Breidt,et al.  Predicting Enhanced Vegetation Index (EVI) curves for ecosystem modeling applications , 2009 .

[66]  Alfonso Calera,et al.  Multisensor comparison of NDVI for a semi‐arid environment in Spain , 2009 .

[67]  Ning Wang,et al.  Detecting chilling injury in Red Delicious apple using hyperspectral imaging and neural networks , 2009 .

[68]  Roohollah Noori,et al.  Evaluation of PCA and Gamma test techniques on ANN operation for weekly solid waste prediction. , 2010, Journal of environmental management.

[69]  Babak Omidvar,et al.  Comparison of ANN and principal component analysis-multivariate linear regression models for predicting the river flow based on developed discrepancy ratio statistic , 2010, Expert Syst. Appl..

[70]  Clement Atzberger,et al.  Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat , 2010 .

[71]  Yuk L. Yung,et al.  On the use of principal component analysis to speed up radiative transfer calculations , 2010 .

[72]  H. Ramon,et al.  Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy , 2010 .

[73]  Stefan Erasmi,et al.  A physically based approach to model LAI from MODIS 250 m data in a tropical region , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[74]  Olga Sykioti,et al.  Monitoring canopy biophysical and biochemical parameters in ecosystem scale using satellite hyperspectral imagery: An application on a Phlomis fruticosa Mediterranean ecosystem using multiangular CHRIS/PROBA observations , 2010 .

[75]  Jingfeng Huang,et al.  Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis , 2010 .

[76]  Jonas Ardö,et al.  Exploring the potential of MODIS EVI for modeling gross primary production across African ecosystems , 2011 .

[77]  Lênio Soares Galvão,et al.  Directional effects on NDVI and LAI retrievals from MODIS: A case study in Brazil with soybean , 2011, Int. J. Appl. Earth Obs. Geoinformation.