Graphical Gaussian models with edge and vertex symmetries

Summary.  We introduce new types of graphical Gaussian models by placing symmetry restrictions on the concentration or correlation matrix. The models can be represented by coloured graphs, where parameters that are associated with edges or vertices of the same colour are restricted to being identical. We study the properties of such models and derive the necessary algorithms for calculating maximum likelihood estimates. We identify conditions for restrictions on the concentration and correlation matrices being equivalent. This is for example the case when symmetries are generated by permutation of variable labels. For such models a particularly simple maximization of the likelihood function is available.

[1]  Bernd Sturmfels,et al.  Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry , 2009, 0906.3529.

[2]  Søren Højsgaard,et al.  Inference in Graphical Gaussian Models with Edge and Vertex Symmetries with the gRc Package for R , 2007 .

[3]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[4]  M. Eichler,et al.  Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property , 2005, math/0508266.

[5]  P. Hall,et al.  An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. P. Frets Heredity of headform in man , 1921, Genetica.

[7]  P. Hall,et al.  An expression signature for p 53 status in human breast cancer predicts mutation status , transcriptional effects , and patient survival , 2005 .

[8]  Søren Højsgaard,et al.  Restricted concentration models - graphical Gaussian models with concentration parameters restricted to being equal , 2005, AISTATS.

[9]  T. Richardson,et al.  Multimodality of the likelihood in the bivariate seemingly unrelated regressions model , 2004 .

[10]  Jesper Madsen,et al.  Estimation of proportional covariances in the presence of certain linear restrictions , 2003 .

[11]  Thomas S. Richardson,et al.  A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence , 2002, UAI.

[12]  Graham J. Wills,et al.  Introduction to graphical modelling , 1995 .

[13]  Jesper Madsen Invariant normal models with recursive graphical Markov structure , 2000 .

[14]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[15]  S. A. Andersson,et al.  SYMMETRY AND LATTICE CONDITIONAL INDEPENDENCE IN A MULTIVARIATE NORMAL DISTRIBUTION , 1998 .

[16]  Michael I. Jordan Graphical Models , 2003 .

[17]  G. Kauermann On a dualization of graphical Gaussian models , 1996 .

[18]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[19]  N. Wermuth,et al.  Linear Dependencies Represented by Chain Graphs , 1993 .

[20]  Søren Ladegaard Buhl On the Existence of Maximum Likelihood Estimators for Graphical Gaussian Models , 1993 .

[21]  S. Lauritzen,et al.  Globally convergent algorithms for maximizing a likelihood function , 1991 .

[22]  J. N. R. Jeffers,et al.  Graphical Models in Applied Multivariate Statistics. , 1990 .

[23]  T. Speed,et al.  Gaussian Markov Distributions over Finite Graphs , 1986 .

[24]  Steen A. Andersson,et al.  Distribution of Eigenvalues in Multivariate Statistical Analysis , 1983 .

[25]  O. Barndorff-Nielsen,et al.  Exponential transformation models , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[26]  Douglas A. Wolfe,et al.  On testing equality of related correlation coefficients , 1976 .

[27]  J. Besag,et al.  On the estimation and testing of spatial interaction in Gaussian lattice processes , 1975 .

[28]  Steen A. Andersson,et al.  Invariant Normal Models , 1975 .

[29]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[30]  T. W. Anderson Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure , 1973 .

[31]  C. Spielberger,et al.  Manual for the State-Trait Anxiety Inventory , 1970 .

[32]  Ingram Olkin,et al.  Testing and Estimation for a Circular Stationary Model , 1969 .

[33]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[34]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[35]  D. Votaw Testing Compound Symmetry in a Normal Multivariate Distribution , 1948 .

[36]  R. Leipnik Distribution of the Serial Correlation Coefficient in a Circularly Correlated Universe , 1947 .

[37]  S. S. Wilks Sample Criteria for Testing Equality of Means, Equality of Variances, and Equality of Covariances in a Normal Multivariate Distribution , 1946 .

[38]  R. Anderson Distribution of the Serial Correlation Coefficient , 1942 .

[39]  J. Schur Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. , 1911 .