Graphical Gaussian models with edge and vertex symmetries
暂无分享,去创建一个
[1] Bernd Sturmfels,et al. Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry , 2009, 0906.3529.
[2] Søren Højsgaard,et al. Inference in Graphical Gaussian Models with Edge and Vertex Symmetries with the gRc Package for R , 2007 .
[3] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[4] M. Eichler,et al. Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property , 2005, math/0508266.
[5] P. Hall,et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[6] G. P. Frets. Heredity of headform in man , 1921, Genetica.
[7] P. Hall,et al. An expression signature for p 53 status in human breast cancer predicts mutation status , transcriptional effects , and patient survival , 2005 .
[8] Søren Højsgaard,et al. Restricted concentration models - graphical Gaussian models with concentration parameters restricted to being equal , 2005, AISTATS.
[9] T. Richardson,et al. Multimodality of the likelihood in the bivariate seemingly unrelated regressions model , 2004 .
[10] Jesper Madsen,et al. Estimation of proportional covariances in the presence of certain linear restrictions , 2003 .
[11] Thomas S. Richardson,et al. A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence , 2002, UAI.
[12] Graham J. Wills,et al. Introduction to graphical modelling , 1995 .
[13] Jesper Madsen. Invariant normal models with recursive graphical Markov structure , 2000 .
[14] M. R. Osborne,et al. On the LASSO and its Dual , 2000 .
[15] S. A. Andersson,et al. SYMMETRY AND LATTICE CONDITIONAL INDEPENDENCE IN A MULTIVARIATE NORMAL DISTRIBUTION , 1998 .
[16] Michael I. Jordan. Graphical Models , 2003 .
[17] G. Kauermann. On a dualization of graphical Gaussian models , 1996 .
[18] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[19] N. Wermuth,et al. Linear Dependencies Represented by Chain Graphs , 1993 .
[20] Søren Ladegaard Buhl. On the Existence of Maximum Likelihood Estimators for Graphical Gaussian Models , 1993 .
[21] S. Lauritzen,et al. Globally convergent algorithms for maximizing a likelihood function , 1991 .
[22] J. N. R. Jeffers,et al. Graphical Models in Applied Multivariate Statistics. , 1990 .
[23] T. Speed,et al. Gaussian Markov Distributions over Finite Graphs , 1986 .
[24] Steen A. Andersson,et al. Distribution of Eigenvalues in Multivariate Statistical Analysis , 1983 .
[25] O. Barndorff-Nielsen,et al. Exponential transformation models , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[26] Douglas A. Wolfe,et al. On testing equality of related correlation coefficients , 1976 .
[27] J. Besag,et al. On the estimation and testing of spatial interaction in Gaussian lattice processes , 1975 .
[28] Steen A. Andersson,et al. Invariant Normal Models , 1975 .
[29] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[30] T. W. Anderson. Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure , 1973 .
[31] C. Spielberger,et al. Manual for the State-Trait Anxiety Inventory , 1970 .
[32] Ingram Olkin,et al. Testing and Estimation for a Circular Stationary Model , 1969 .
[33] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[34] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[35] D. Votaw. Testing Compound Symmetry in a Normal Multivariate Distribution , 1948 .
[36] R. Leipnik. Distribution of the Serial Correlation Coefficient in a Circularly Correlated Universe , 1947 .
[37] S. S. Wilks. Sample Criteria for Testing Equality of Means, Equality of Variances, and Equality of Covariances in a Normal Multivariate Distribution , 1946 .
[38] R. Anderson. Distribution of the Serial Correlation Coefficient , 1942 .
[39] J. Schur. Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. , 1911 .