Exit times of Brownian motion, harmonic majorization, and Hardy spaces☆
暂无分享,去创建一个
[1] B. A. Taylor,et al. Spherical rearrangements, subharmonic functions, and $\ast$-functions in $n$-space , 1976 .
[2] $H^p$ spaces and exit times of Brownian motion , 1975 .
[3] A. Baernstein. Integral means, univalent functions and circular symmetrization , 1974 .
[4] D. Burkholder. Distribution Function Inequalities for Martingales , 1973 .
[5] L. Hansen. Boundary values and mapping properties ofHP functions , 1972 .
[6] L. L. Helms. Introduction to potential theory , 1971 .
[7] D. Burkholder,et al. A maximal function characterization of the class , 1971 .
[8] L. Hansen. Hardy classes and ranges of functions. , 1970 .
[9] D. Burkholder,et al. Extrapolation and interpolation of quasi-linear operators on martingales , 1970 .
[10] D. Sarason,et al. Past and Future , 1967 .
[11] K. Haliste. Estimates of harmonic measures , 1965 .
[12] J. Doob. Conformally invariant cluster value theory , 1961 .
[13] G. A. Hunt. SOME THEOREMS CONCERNING BROWNIAN MOTION , 1956 .
[14] T. W. Anderson. The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities , 1955 .
[15] P. Meyer. Probability and potentials , 1966 .
[16] J. Doob. Semimartingales and subharmonic functions , 1954 .
[17] J. Doob. Stochastic processes , 1953 .