Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles.

Nanometer-sized colloidal particles (nanoparticles) have been extensively used in biomedical applications as a result of their many useful electronic, optical, and magnetic properties that are derived from their nanometer size and composition. Semiconductor nanoparticles (also known as quantum dots) have been applied as fluorescent probes for cell labeling in optical imaging, and gold nanoparticles derivatized with oligonucleotides have been used for sensing complementary DNA strands. Magnetic nanoparticles have been applied to contrast-enhancement agents for magnetic resonance imaging (MRI), magnetic carriers for drug-delivery systems, biosensors, and bioseparation. MRI is one of the most powerful imaging techniques for living organisms as it provides images with excellent anatomical details based on soft-tissue contrast and functional information in a non-invasive and real-time monitoring manner. MRI has further advanced by the development of contrast agents that enable more specific and clearer images and enlargements of detectable organs and systems, leading to a wide scope of applications of MRI not only for diagnostic radiology but also for therapeutic medicine. Current MRI contrast agents are in the form of either paramagnetic complexes or magnetic nanoparticles. Paramagnetic complexes, which are usually gadolinium (Gd) or manganese (Mn) chelates, accelerate longitudinal (T1) relaxation of water protons and exert bright contrast in regions where the complexes localize. For instance, gadolinium diethylenetriaminepentaacetate (Gd-DTPA) has been the most widely used of such complexes and its main clinical applications are focused on detecting the breakage of the blood-brain barrier (BBB) and changes in vascularity, flow dynamics, and perfusion. Manganese-enhanced MRI (MEMRI), which uses manganese ion (Mn) as a T1 contrast agent, is applicable to animals only owing to the toxicity of Mn when it accumulates excessively in tissues and despite the increasing appreciation of this technique in neuroscience research. The recent development of molecular and cellular imaging to help visualize disease-specific biomarkers at the molecular and cellular levels has led to an increased interest in magnetic nanoparticles as MRI contrast agents. In particular, superparamagnetic iron oxide (SPIO) has emerged as the prevailing agent so far. 10] However, the negative contrast effect and magnetic susceptibility artifacts of iron oxide nanoparticles are significant drawbacks of using SPIO in MRI. The resulting dark signal can mislead the clinical diagnosis in T2-weighted MRI because the signal is often confused with the signals from bleeding, calcification, or metal deposits, and the susceptibility artifacts distort the background image. For the extensive applications of MRI to diagnostic radiology and therapeutic medicine and to overcome the [*] Prof. J. H. Lee, Prof. S. T. Kim, Prof. S.-H. Kim Department of Radiology, Samsung Medical Center Sungkyunkwan University School of Medicine Seoul 135-710 (Korea) Fax: (+82)2-3410-0084 E-mail: junghee42.lee@smc.samsung.co.kr

[1]  Jinwoo Cheon,et al.  Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. , 2006, Angewandte Chemie.

[2]  Taeghwan Hyeon,et al.  Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. , 2006, Angewandte Chemie.

[3]  Warren C. W. Chan,et al.  Quantum Dots in Biological and Biomedical Research: Recent Progress and Present Challenges , 2006 .

[4]  Taeghwan Hyeon,et al.  Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. , 2006, Journal of the American Chemical Society.

[5]  Igor L. Medintz,et al.  Materialien für den resonanten Fluoreszenzenergietransfer (FRET): jenseits klassischer Donor‐Acceptor‐Kombinationen , 2006 .

[6]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[7]  Chad A Mirkin,et al.  Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. , 2006, Angewandte Chemie.

[8]  Bing Xu,et al.  Biofunctional magnetic nanoparticles for protein separation and pathogen detection. , 2006, Chemical communications.

[9]  Jung Ho Yu,et al.  Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[10]  Joseph Wang Nanomaterial-based amplified transduction of biomolecular interactions. , 2005, Small.

[11]  R. Weissleder,et al.  Cell-specific targeting of nanoparticles by multivalent attachment of small molecules , 2005, Nature Biotechnology.

[12]  Igor L. Medintz,et al.  A Reagentless Biosensing Assembly Based on Quantum Dot–Donor Förster Resonance Energy Transfer , 2005 .

[13]  Jin-Sil Choi,et al.  In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. , 2005, Journal of the American Chemical Society.

[14]  C. Niemeyer,et al.  Sensitive detection of proteins using difunctional DNA-gold nanoparticles. , 2005, Small.

[15]  Jinwoo Cheon,et al.  Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. , 2005, Journal of the American Chemical Society.

[16]  Mina Kim,et al.  A Magnetic Nanoprobe Technology for Detecting Molecular Interactions in Live Cells , 2005, Science.

[17]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[18]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.

[19]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[20]  Hellmut Merkle,et al.  Manganese‐enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: Dose‐dependent and temporal evolution of T1 contrast , 2005, Magnetic resonance in medicine.

[21]  Chad A. Mirkin,et al.  Nanobiotechnology :concepts, applications and perspectives , 2005 .

[22]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[23]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[24]  Jeff W M Bulte,et al.  Iron oxide MR contrast agents for molecular and cellular imaging , 2004, NMR in biomedicine.

[25]  Ichio Aoki,et al.  Manganese‐enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations , 2004, NMR in biomedicine.

[26]  Hedi Mattoussi,et al.  Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy , 2004, Nature Medicine.

[27]  Heather Kalish,et al.  Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. , 2004, Blood.

[28]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[29]  Bing Xu,et al.  Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. , 2004, Journal of the American Chemical Society.

[30]  Bing Xu,et al.  Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins. , 2004, Journal of the American Chemical Society.

[31]  Bongsoo Kim,et al.  Size-dependent magnetic properties of colloidal Mn(3)O(4) and MnO nanoparticles. , 2004, Angewandte Chemie.

[32]  Chad A. Mirkin,et al.  Concepts, applications and perspectives , 2004 .

[33]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[34]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[35]  C. Niemeyer,et al.  Oligofunktionale Konjugate aus DNA und Gold‐Nanopartikeln , 2003 .

[36]  Christof M Niemeyer,et al.  Oligofunctional DNA-gold nanoparticle conjugates. , 2003, Angewandte Chemie.

[37]  Bing Xu,et al.  Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. , 2003, Journal of the American Chemical Society.

[38]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[39]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[40]  M. Yin,et al.  Synthesis of monodisperse nanocrystals of manganese oxides. , 2003, Journal of the American Chemical Society.

[41]  Ralph Weissleder,et al.  Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. , 2003, The New England journal of medicine.

[42]  Taeghwan Hyeon,et al.  Chemical synthesis of magnetic nanoparticles. , 2003, Chemical communications.

[43]  Wolfgang Ebert,et al.  Tissue-specific MR contrast agents. , 2003, European journal of radiology.

[44]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[45]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[46]  T. A. Taton Nanoscale Materials in Chemistry Edited by Kenneth J. Klabunde (Kansas State University). Wiley-Interscience: New York. 2001. xi + 292 pp. $99.95. ISBN: 0-471-38395-3. , 2002 .

[47]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[48]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[49]  Peter van Gelderen,et al.  Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells , 2001, Nature Biotechnology.

[50]  C. Niemeyer,et al.  Nanopartikel, Proteine und Nucleinsäuren: Die Biotechnologie begegnet den Materialwissenschaften , 2001 .

[51]  C. Niemeyer REVIEW Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science , 2022 .

[52]  C. Niemeyer,et al.  DNA‐vermittelte Funktionalisierung von Goldkolloiden mit Proteinen , 2001 .

[53]  Christof M. Niemeyer,et al.  DNA-Directed Functionalization of Colloidal Gold with Proteins This work was supported by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie. We thank Prof. D. Blohm for helpful discussions and generous support. , 2001, Angewandte Chemie.

[54]  K. Klabunde,et al.  Nanoscale materials in chemistry , 2001 .

[55]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[56]  C. Mirkin,et al.  Scanometric DNA array detection with nanoparticle probes. , 2000, Science.

[57]  J A Frank,et al.  Neurotransplantation of magnetically labeled oligodendrocyte progenitors: magnetic resonance tracking of cell migration and myelination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[58]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[59]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[60]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[61]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[62]  Carlos Alberto Brebbia,et al.  Basic principles and applications , 1984 .