Input-Output Representation and Identifiability of Delay Parameters for Nonlinear Systems with Multiple Time-Delays

We have analyzed the identifiability of time-lag parameters in nonlinear delay systems using an algebraic framework. The identifiability is determined by the form of the system’s input-output representation. The values of the time lags can be found directly from the input-output equations, if these can be obtained explicitly. Linear-algebraic criteria are formulated to decide the identifiability of the delay parameters when explicit computation of the input-output relations is not possible.

[1]  Xiaohua Xia,et al.  Parameter identifiability of Nonlinear systems with time-delay , 2006, IEEE Transactions on Automatic Control.

[2]  Yury Orlov,et al.  Identifiability analysis of linear delay‐differential systems , 2002 .

[3]  M. Anguelova Observability and identifiability of nonlinear systems with applications in biology , 2007 .

[4]  Bernt Wennberg,et al.  State elimination and identifiability of the delay parameter for nonlinear time-delay systems , 2008, Autom..

[5]  C. Moog,et al.  Nonlinear Control Systems: An Algebraic Setting , 1999 .

[6]  Martín Velasco-Villa,et al.  The disturbance decoupling problem for time-delay nonlinear systems , 2000, IEEE Trans. Autom. Control..

[7]  Yury Orlov,et al.  On identifiability of linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[8]  Sjoerd Verduyn Lunel Parameter identifiability of differential delay equations , 2001 .

[9]  K. Forsman,et al.  Input-output equations and observability for polynomial delay systems , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[10]  P. Cohn Free rings and their relations , 1973 .

[11]  Xiaohua Xia,et al.  Analysis of nonlinear time-delay systems using modules over non-commutative rings , 2002, Autom..

[12]  Martín Velasco-Villa,et al.  The structure of nonlinear time delay systems , 2000, Kybernetika.

[13]  H. Rabitz,et al.  Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.

[14]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[15]  Tsit Yuen Lam,et al.  Lectures on modules and rings , 1998 .

[16]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .