Mastering chaos in ecology

[1]  Graeme D. Ruxton,et al.  Controlling spatial chaos in metapopulations with long-range dispersal , 1997 .

[2]  G. Fox Chaos and evolution. , 1995, Trends in ecology & evolution.

[3]  Graeme D. Ruxton,et al.  Chaos in a Three‐Species Food Chain with a Lower Bound on the Bottom Population , 1996 .

[4]  Peter Turchin,et al.  Chaos in microtine populations , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  N. Stenseth,et al.  Voles and lemmings: chaos and uncertainty in fluctuating populations , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[6]  J N Eisenberg,et al.  The structural stability of a three-species food chain model. , 1995, Journal of theoretical biology.

[7]  M. Doebeli Updating Gillespie with Controlled Chaos , 1995, The American Naturalist.

[8]  N. Stenseth,et al.  Bootstrap estimated uncertainty of the dominant Lyapunov exponent for Holarctic microtine rodents , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[10]  Michael Doebeli,et al.  DISPERSAL AND DYNAMICS , 1995 .

[11]  G. Ruxton Temporal scales and the occurrence of chaos in coupled populations , 1995 .

[12]  Bayly,et al.  Practical considerations in the control of chaos. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  Abarbanel,et al.  Tracking unstable orbits in chaos using dissipative feedback control. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Meucci,et al.  Experimental control of chaos by means of weak parametric perturbations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  A Garfinkel,et al.  Chaos and chaos control in biology. , 1994, The Journal of clinical investigation.

[16]  Kevin S. McCann,et al.  Biological Conditions for Chaos in a Three‐Species Food Chain , 1994 .

[17]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[18]  M. Doebeli The evolutionary advantage of controlled chaos , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[19]  Graeme D. Ruxton,et al.  Linked populations can still be chaotic , 1993 .

[20]  P. Turchin Chaos and stability in rodent population dynamics: evidence from non-linear time-series analysis , 1993 .

[21]  Manuel A. Matías,et al.  Control of chaos in unidimensional maps , 1993 .

[22]  Kestutis Pyragas,et al.  Experimental control of chaos by delayed self-controlling feedback , 1993 .

[23]  W. Schaffer,et al.  Chaos reduces species extinction by amplifying local population noise , 1993, Nature.

[24]  J. González-Andújar,et al.  The effect of dispersal between chaotic and non-chaotic populations within a metapopulation , 1993 .

[25]  M. Gatto,et al.  Chaotic population dynamics can result from natural selection , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  S. Ellner,et al.  Chaos in Ecology: Is Mother Nature a Strange Attractor?* , 1993 .

[27]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[28]  H. McCallum,et al.  Effects of immigration on chaotic population dynamics , 1992 .

[29]  Peter Turchin,et al.  Complex Dynamics in Ecological Time Series , 1992 .

[30]  Hunt Stabilizing high-period orbits in a chaotic system: The diode resonator. , 1991, Physical review letters.

[31]  Lee Altenberg,et al.  Chaos from Linear Frequency-Dependent Selection , 1991, The American Naturalist.

[32]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[33]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[34]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[35]  Chaos/xaoc : Soviet-American perspectives on nonlinear science , 1990 .

[36]  Lima,et al.  Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[37]  E. Kostelich,et al.  Characterization of an experimental strange attractor by periodic orbits. , 1989, Physical review. A, General physics.

[38]  A A Berryman,et al.  Are ecological systems chaotic - And if not, why not? , 1989, Trends in ecology & evolution.

[39]  William M. Schaffer,et al.  Stretching and Folding in Lynx Fur Returns: Evidence for a Strange Attractor in Nature? , 1984, The American Naturalist.

[40]  T. Bellows The Descriptive Properties of Some Models for Density Dependence , 1981 .

[41]  Robert M. May,et al.  Patterns of Dynamical Behaviour in Single-Species Populations , 1976 .

[42]  J. Maynard Smith,et al.  The Stability of Predator‐Prey Systems , 1973 .

[43]  K. T. Compton,et al.  American Institute of Physics , 1931, Nature.