Hiding Cliques for Cryptographic Security

AbstractWe demonstrate how a well studied combinatorial optimizationproblem may be used as a new cryptographic primitive. The problemin question is that of finding a "large" clique in a randomgraph. While the largest clique in a random graph with nvertices and edge probability p is very likely tobe of size about $$2\log _{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 p}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$p$}}} n$$ , it is widely conjecturedthat no polynomial-time algorithm exists which finds a cliqueof size $$ \geqslant (1 + \varepsilon )\log _{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 p}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$p$}}} n$$ with significantprobability for any constant ∈ > 0. We presenta very simple method of exploiting this conjecture by “hiding”large cliques in random graphs. In particular, we show that ifthe conjecture is true, then when a large clique—of size,say, $$(1 + 2\varepsilon )\log _{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 p}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$p$}}} n{\mathbf{---}}$$ is randomlyinserted (“hidden”) in a random graph, finding a clique ofsize $$ \geqslant (1 + \varepsilon )\log _{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 p}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$p$}}} n$$ remains hard.Our analysis also covers the case of high edge probabilitieswhich allows us to insert cliques of size up to $$n^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {4 - \varepsilon }}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${4 - \varepsilon }$}}} (\varepsilon >0)$$ . Our result suggests several cryptographicapplications, such as a simple one-way function.

[1]  Frank Thomson Leighton,et al.  Graph Bisection Algorithms with Good Average Case Behavior , 1984, FOCS.

[2]  Béla Bollobás,et al.  Random Graphs , 1985 .

[3]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[4]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[5]  Silvio Micali,et al.  Proofs that yield nothing but their validity and a methodology of cryptographic protocol design , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[6]  Jonathan S. Turner,et al.  On the Probable Performance of Heuristics for Bandwidth Minimization , 1986, SIAM J. Comput..

[7]  Ravi B. Boppana,et al.  Eigenvalues and graph bisection: An average-case analysis , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[8]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[9]  Leonid A. Levin,et al.  Random instances of a graph coloring problem are hard , 1988, STOC '88.

[10]  Martin E. Dyer,et al.  The Solution of Some Random NP-Hard Problems in Polynomial Expected Time , 1989, J. Algorithms.

[11]  Yuri Gurevich,et al.  Average Case Completeness , 1991, J. Comput. Syst. Sci..

[12]  Ludek Kucera,et al.  A Generalized Encryption Scheme Based on Random Graphs , 1991, WG.

[13]  Alan M. Frieze,et al.  Finding hidden Hamiltonian cycles , 1991, STOC '91.

[14]  Mark Jerrum,et al.  Large Cliques Elude the Metropolis Process , 1992, Random Struct. Algorithms.

[15]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[16]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[17]  Marcus Peinado,et al.  Experiments with polynomial-time CLIQUE approximation algorithms on very large graphs , 1993, Cliques, Coloring, and Satisfiability.

[18]  Carsten Lund,et al.  Efficient probabilistically checkable proofs and applications to approximations , 1993, STOC.

[19]  Marcus Peinado,et al.  On the Performance of Polynomial-time CLIQUE Approximation Algorithms on Very Large Graphs , 1994 .

[20]  Mihir Bellare,et al.  Improved non-approximability results , 1994, STOC '94.

[21]  Marcus Peinado Hard Graphs for the Randomized Boppana-Halldörsson Algorithm for MAXCLIQUE , 1994, Nord. J. Comput..

[22]  Mihir Bellare,et al.  Free bits, PCPs and non-approximability-towards tight results , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[23]  Joel H. Spencer,et al.  Coloring Random and Semi-Random k-Colorable Graphs , 1995, J. Algorithms.

[24]  Marcus Peinado Improved Lower Bounds for the Randomized Boppana-Halldórsson Algorithm for MAXCLIQUE , 1995, COCOON.

[25]  Johan Håstad Testing of the long code and hardness for clique , 1996, STOC '96.

[26]  A. Juels,et al.  Topics in black-box combinatorial optimization , 1996 .

[27]  David S. Johnson,et al.  Dimacs series in discrete mathematics and theoretical computer science , 1996 .

[28]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[29]  Michael Luby,et al.  Pseudorandomness and cryptographic applications , 1996, Princeton computer science notes.

[30]  Johan Håstad,et al.  Clique is hard to approximate within n1-epsilon , 1996, Electron. Colloquium Comput. Complex..

[31]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[32]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[33]  Lars Engebretsen,et al.  Clique Is Hard To Approximate Within , 2000 .