Delayed Rejection Metropolis Light Transport

Designing robust mutation strategies for primary sample space Metropolis light transport is a challenging problem: poorly tuned mutations both hinder state space exploration and introduce structured image artifacts. Scenes with complex materials, lighting, and geometry make hand-designing strategies that remain optimal over the entire state space infeasible. Moreover, these difficult regions are often sparse in state space, and so relying exclusively on intricate—and often expensive—proposal mechanisms can be wasteful, whereas simpler inexpensive mechanisms are more sample efficient. We generalize Metropolis–Hastings light transport to employ a flexible two-stage mutation strategy based on delayed rejection Markov chain Monte Carlo. Our approach generates multiple proposals based on the failure of previous ones, all while preserving Markov chain ergodicity. This allows us to reduce error while maintaining fast global exploration and low correlation across chains. Direct application of delayed rejection to light transport leads to low acceptance probabilities, and so we also propose a novel transition kernel to alleviate this issue. We benchmark our approach on several applications including bold-then-timid and cheap-then-expensive proposals across different light transport algorithms. Our method is applicable to any primary sample space algorithm with minimal implementation effort, producing consistently better results on a variety of challenging scenes.

[1]  Wenzel Jakob,et al.  Reversible Jump Metropolis Light Transport Using Inverse Mappings , 2017, ACM Trans. Graph..

[2]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[3]  Anton Kaplanyan,et al.  Path Space Regularization for Holistic and Robust Light Transport , 2013, Comput. Graph. Forum.

[4]  Jaroslav Krivánek,et al.  Improving global exploration of MCMC light transport simulation , 2016, SIGGRAPH Posters.

[5]  A. Mira On Metropolis-Hastings algorithms with delayed rejection , 2001 .

[6]  Toshiya Hachisuka,et al.  Robust adaptive photon tracing using photon path visibility , 2011, TOGS.

[7]  László Szirmay-Kalos,et al.  Improved stratification for Metropolis light transport , 2017, Comput. Graph..

[8]  Jaakko Lehtinen,et al.  Anisotropic Gaussian mutations for metropolis light transport through Hessian-Hamiltonian dynamics , 2015, ACM Trans. Graph..

[9]  Yu-Chi Lai,et al.  Photorealistic Image Rendering with Population Monte Carlo Energy Redistribution , 2007, Rendering Techniques.

[10]  Miquel Trias,et al.  Delayed rejection schemes for efficient Markov-Chain Monte-Carlo sampling of multimodal distributions , 2009, 0904.2207.

[11]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[12]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[13]  Peter Shirley,et al.  A variance analysis of the Metropolis Light Transport algorithm , 2001, Comput. Graph..

[14]  Anton Kaplanyan,et al.  Improved Half Vector Space Light Transport , 2015, Comput. Graph. Forum.

[15]  László Szirmay-Kalos,et al.  Automatic Parameter Control for Metropolis Light Transport , 2013, Eurographics.

[16]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[17]  Toshiya Hachisuka,et al.  Multiplexed metropolis light transport , 2014, ACM Trans. Graph..

[18]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[19]  Luca Fascione,et al.  Manifold Next Event Estimation , 2015, Comput. Graph. Forum.

[20]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[21]  Merlin Nimier-David,et al.  Mitsuba 2 , 2019, ACM Trans. Graph..

[22]  P. Green,et al.  Delayed rejection in reversible jump Metropolis–Hastings , 2001 .

[23]  A. Gelfand,et al.  On Markov Chain Monte Carlo Acceleration , 1994 .

[24]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[25]  Justin Talbot,et al.  Energy redistribution path tracing , 2005, ACM Trans. Graph..

[26]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[27]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[28]  M. Girolami,et al.  Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[29]  B. Segovia,et al.  Coherent Metropolis Light Transport with Multiple-Try Mutations , 2007 .

[30]  Kei Iwasaki,et al.  Replica exchange light transport on relaxed distributions , 2013, SIGGRAPH '13.

[31]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[32]  Toshiya Hachisuka,et al.  Geometry-aware metropolis light transport , 2018, ACM Trans. Graph..

[33]  Jacopo Pantaleoni,et al.  Charted metropolis light transport , 2016, ACM Trans. Graph..

[34]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[35]  Martin Sik,et al.  Survey of Markov Chain Monte Carlo Methods in Light Transport Simulation , 2020, IEEE Transactions on Visualization and Computer Graphics.

[36]  Ryan P. Adams,et al.  Elliptical slice sampling , 2009, AISTATS.

[37]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[38]  Jaakko Lehtinen,et al.  Differentiable Monte Carlo ray tracing through edge sampling , 2018, ACM Trans. Graph..

[39]  BENEDIKT BITTERLI,et al.  Selectively metropolised Monte Carlo light transport simulation , 2019, ACM Trans. Graph..

[40]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[41]  Toshiya Hachisuka,et al.  Fusing state spaces for markov chain Monte Carlo rendering , 2017, ACM Trans. Graph..

[42]  Andrew Golightly,et al.  Adaptive, Delayed-Acceptance MCMC for Targets With Expensive Likelihoods , 2015, 1509.00172.

[43]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[44]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[45]  R. Ramamoorthi,et al.  Frequency domain normal map filtering , 2007, SIGGRAPH 2007.

[46]  Mark A. Girolami,et al.  Information-Geometric Markov Chain Monte Carlo Methods Using Diffusions , 2014, Entropy.

[47]  Thomas Müller,et al.  Path guiding in production , 2019, SIGGRAPH Courses.

[48]  T KajiyaJames The rendering equation , 1986 .

[49]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[50]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[51]  C. Fox,et al.  Markov chain Monte Carlo Using an Approximation , 2005 .

[52]  Anton Kaplanyan,et al.  The natural-constraint representation of the path space for efficient light transport simulation , 2014, ACM Trans. Graph..

[53]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[54]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..