Computer Vision and Mathematical Morphology
暂无分享,去创建一个
[1] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[2] Michio Suzuki. Group Theory I , 1981 .
[3] Jos B. T. M. Roerdink,et al. Manifold Shape: from Differential Geometry to Mathematical Morphology , 1994 .
[4] Felix . Klein,et al. Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .
[5] G. Matheron. Random Sets and Integral Geometry , 1976 .
[6] J. Roerdink,et al. Mathematical morphology for structure without translation symmetry , 1988 .
[7] D. Kendall. SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .
[8] H. Heijmans. Mathematical morphology: an algebraic approach , 1987 .
[9] J.-M. Blosseville,et al. Traffic Spatial Measurements Using Video Image Processing , 1988, Other Conferences.
[10] H. Hadwiger. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .
[11] D. Robinson. A Course in the Theory of Groups , 1982 .
[12] Jos B. T. M. Roerdink,et al. Mathematical morphology with non-commutative symmetry groups , 1993 .
[13] H. Heijmans. Morphological image operators , 1994 .
[14] Henk J. A. M. Heijmans,et al. The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..
[15] L. Gouzenes. Strategies for Solving Collision-free Trajectories Problems for Mobile and Manipulator Robots , 1984 .
[16] C. Ronse. Working Document Wd54 Fourier Analysis, Mathematical Morphology, and Vision , 1989 .
[17] Jos B. T. M. Roerdink,et al. Mathematical morphology on the sphere , 1990, Other Conferences.
[18] H. Heijmans,et al. The algebraic basis of mathematical morphology , 1988 .
[19] Jos B. T. M. Roerdink,et al. On the construction of translation and rotation invariant morphological operators , 1990 .
[20] Andrew Zisserman,et al. Applications of Invariance in Computer Vision , 1993, Lecture Notes in Computer Science.
[21] Jos B. T. M. Roerdink. Solving the empty space problem in robot path planning by mathematical morphology , 1993 .