Bayesian analysis of order-statistics models for ranking data

In this paper, a class of probability models for ranking data, the order-statistics models, is investigated. We extend the usual normal order-statistics model into one where the underlying random variables follow a multivariate normal distribution. Bayesian approach and the Gibbs sampling technique are used for parameter estimation. In addition, methods to assess the adequacy of model fit are introduced. Robustness of the model is studied by considering a multivariate-t distribution. The proposed method is applied to analyze the presidential election data of the American Psychological Association (APA).

[1]  D. Wise,et al.  A CONDITIONAL PROBIT MODEL FOR QUALITATIVE CHOICE: DISCRETE DECISIONS RECOGNIZING INTERDEPENDENCE AND HETEROGENEOUS PREFERENCES' , 1978 .

[2]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[3]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[4]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[5]  B. R. Dansie Normal order statistics as permutation probability models , 1986 .

[6]  Peter McCullagh,et al.  Permutations and Regression Models , 1993 .

[7]  Ulf Böckenholt,et al.  Applications of Thurstonian Models to Ranking Data , 1993 .

[8]  P. Diaconis A Generalization of Spectral Analysis with Application to Ranked Data , 1989 .

[9]  Hal S. Stern,et al.  Probability Models on Rankings and the Electoral Process , 1993 .

[10]  Ayala Cohen,et al.  Assessing Goodness of Fit of Ranking Models to Data , 1983 .

[11]  Vassilis A. Hajivassiliou,et al.  Simulation Estimation Methods for Limited Dependent Variable Models , 1991 .

[12]  Douglas E. Critchlow,et al.  Ranking Models with Item Covariates , 1993 .

[13]  Pradeep K. Chintagunta,et al.  Estimating a Multinomial Probit Model of Brand Choice Using the Method of Simulated Moments , 1992 .

[14]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[15]  D. S. Bunch,et al.  Estimability in the Multinomial Probit Model , 1989 .

[16]  Graham J. G. Upton,et al.  Biases in Local Government Elections Due to Position on the Ballot Paper , 1974 .

[17]  Mark E. Johnson Multivariate Statistical Simulation: Johnson/Multivariate , 1987 .

[18]  T. W. Anderson An Introduction to Multivariate Statistical Analysis , 1959 .

[19]  Hal S. Stern,et al.  A continuum of paired comparisons models , 1990 .

[20]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[21]  A. Tversky Elimination by aspects: A theory of choice. , 1972 .

[22]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[23]  H. E. Daniels,et al.  The Relation Between Measures of Correlation in the Universe of Sample Permutations , 1944 .

[24]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[25]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[26]  Jerry A. Hausman,et al.  Assessing the potential demand for electric cars , 1981 .

[27]  Nicholas G. Polson,et al.  Inference for nonconjugate Bayesian Models using the Gibbs sampler , 1991 .

[28]  James Arbuckle,et al.  A GENERAL PROCEDURE FOR PARAMETER ESTIMATION FOR THE LAW OF COMPARATIVE JUDGEMENT , 1973 .

[29]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[30]  B. R. Dansie PARAMETER ESTIMABILITY IN THE MULTINOMIAL PROBIT MODEL , 1985 .

[31]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[32]  U. Böckenholt,et al.  BAYESIAN ESTIMATION OF THURSTONIAN RANKING MODELS BASED ON THE GIBBS SAMPLER , 1999 .

[33]  Hal S. Stern,et al.  Models for Distributions on Permutations , 1990 .

[34]  G. M. Tallis,et al.  An Alternative Approach to the Analysis of Permutations , 1983 .

[35]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[36]  The application of ranking probability models to racetrack betting , 1995 .

[37]  Terry Elrod,et al.  A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data , 1995 .

[38]  J. Marden Analyzing and Modeling Rank Data , 1996 .

[39]  J. Yellott The relationship between Luce's Choice Axiom, Thurstone's Theory of Comparative Judgment, and the double exponential distribution , 1977 .

[40]  L. Tierney Rejoinder: Markov Chains for Exploring Posterior Distributions , 1994 .

[41]  Seiji Iwakura,et al.  Multinomial probit with structured covariance for route choice behavior , 1997 .

[42]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[43]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[44]  R. Henery Permutation probabilities for gamma random variables , 1983, Journal of Applied Probability.

[45]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[46]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[47]  Joseph S. Verducci,et al.  Probability models on rankings. , 1991 .

[48]  H. E. Daniels,et al.  Rank Correlation and Population Models , 1950 .

[49]  S. Chib,et al.  Bayesian residual analysis for binary response regression models , 1995 .

[50]  Paul A. Ruud,et al.  Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results , 1996 .

[51]  Dale J. Poirier,et al.  Rank‐ordered logit models: An empirical analysis of Ontario voter preferences , 1994 .

[52]  Randall G. Chapaaan,et al.  Exploiting Rank Ordered Choice Set Data within the Stochastic Utility Model , 1982 .

[53]  R. J. Henery,et al.  Permutation Probabilities as Models for Horse Races , 1981 .

[54]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[55]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[56]  L. Thurstone A law of comparative judgment. , 1994 .

[57]  Kerrie Mengersen,et al.  [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .

[58]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .