Automatic spawning detection in oysters: a fault detection approach

Using measurements of valve activity in a population of bivalves under natural environmental condition (16 oysters in the Bay of Arcachon, France), an algorithm for the automatic detection of spawning period of oysters is proposed. The algorithm is based on the fault detection approach and it works through the estimation of velocity of valves movement activity, which can be obtained by calculating the time derivative of the valves distance. A summarized description on the method used for the derivative estimation is provided, followed by the associated signal processing and decision making algorithm to determine spawning from the velocity signal. A protection from false spawning detection is also considered by analyzing the synchronicity in spawning. Through this study, it is shown that spawning in a population of oysters living in their natural habitat (i.e. in the sea) can be automatically detected without any human expertise, like visual analysis.

[1]  Peter Scanes,et al.  ‘Oyster watch’: Monitoring trace metal and organochlorine concentrations in Sydney's coastal waters , 1996 .

[2]  Paul S. Galtsoff,et al.  PHYSIOLOGY OF REPRODUCTION OF OSTREA VIRGINICA: I. SPAWNING REACTIONS OF THE FEMALE AND MALE , 1938 .

[3]  Ismaël Bernard,et al.  Écologie de la reproduction de l’huître creuse, Crassostrea gigas, sur les côtes atlantiques françaises : vers une explication de la variabilité du captage , 2011 .

[4]  Damien Tran,et al.  Influence of sex and spawning status on oxygen consumption and blood oxygenation status in oysters Crassostrea gigas cultured in a Mediterranean lagoon (Thau, France) , 2008 .

[5]  Damien Tran,et al.  Field Chronobiology of a Molluscan Bivalve: How the Moon and Sun Cycles Interact to Drive Oyster Activity Rhythms , 2011, Chronobiology international.

[6]  Damien Tran,et al.  Estimation of potential and limits of bivalve closure response to detect contaminants: Application to cadmium , 2003, Environmental toxicology and chemistry.

[7]  Mohamedou Sow,et al.  In situ giant clam growth rate behavior in relation to temperature: A one‐year coupled study of high‐frequency noninvasive valvometry and sclerochronology , 2011 .

[8]  Wilfrid Perruquetti,et al.  Algebraic parameter estimation of a multi-sinusoidal waveform signal from noisy data , 2013, 2013 European Control Conference (ECC).

[9]  Damien Tran,et al.  Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum. , 2010 .

[10]  Damien Tran,et al.  Looking for the clock mechanism responsible for circatidal behavior in the oyster Crassostrea gigas , 2014 .

[11]  Denis V. Efimov,et al.  Dynamical model identification of population of oysters for water quality monitoring , 2014, 2014 European Control Conference (ECC).

[12]  E. His,et al.  Contribution à l'étude biologique de l'Huître dans le Bassin d'Arcachon, activité valvaire de Crassostrea angulata et de Crassostrea gigas; application à l'étude de la reproduction de l'Huître Japonaise , 1976 .

[13]  Leonid M. Fridman,et al.  A Hybrid Robust Non-Homogeneous Finite-Time Differentiator , 2011, IEEE Transactions on Automatic Control.

[14]  Mohamedou Sow,et al.  Water quality assessment by means of HFNI valvometry and high-frequency data modeling , 2011, Environmental monitoring and assessment.

[15]  Wilfrid Perruquetti,et al.  Finite-Time Observers: Application to Secure Communication , 2008, IEEE Transactions on Automatic Control.

[16]  Denis Efimov,et al.  Fault Diagnosis and Fault-Tolerant Control and Guidance for Aerospace Vehicles: From Theory to Application , 2013 .

[17]  Damien Tran,et al.  Genetic and genotoxic impacts in the oyster Crassostrea gigas exposed to the harmful alga Alexandrium minutum. , 2013, Aquatic toxicology.

[18]  Edward D. Goldberg,et al.  The mussel watch — A first step in global marine monitoring , 1975 .

[19]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[20]  Damien Tran,et al.  Statistical Study of bivalve High Frequency Microclosing Behavior: Scaling Properties and Shot noise Analysis , 2011, Int. J. Bifurc. Chaos.

[21]  D. Tran,et al.  Evidence for a Plastic Dual Circadian Rhythm in the Oyster Crassostrea gigas , 2012, Chronobiology international.

[22]  G. Durrieu,et al.  Influence of the parasite worm Polydora sp. on the behaviour of the oyster Crassostrea gigas: a study of the respiratory impact and associated oxidative stress , 2007 .