First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN and InxAl1−xN alloys

First-principles calculations, by means of the full-potential augmented plane wave method using the local density approximation, were carried out for the structural and electronic properties of the AlxGa1−xN, InxGa1−xN and InxAl1−xN alloys in the wurtzite structure. We have investigated the lattice parameters and band gap energies. The lattice constants a and c are found to change linearly for the AlxGa1−xN alloy, while for both InxGa1−xN and InxAl1−xN alloys the lattice parameters, a, exhibit an upward bowing. The calculated band gap variation for the three alloys exhibit a downward bowing of 0.71 eV, 1.7 eV and 4.09 eV for AlxGa1−xN, InxGa1−xN and InxAl1−xN, respectively.

[1]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[2]  Manijeh Razeghi,et al.  Determination of the band-gap energy of Al 12x In x N grown by metal-organic chemical-vapor deposition , 1997 .

[3]  M. Schilfgaarde,et al.  Effects of biaxial strain and chemical ordering on the band gap of InGaN , 2001 .

[4]  Lara K. Teles,et al.  Influence of composition fluctuations and strain on gap bowing inInxGa1−xN , 2001 .

[5]  Joseph A. Miragliotta,et al.  High quality self‐nucleated AlxGa1−x N layers on (00.1) sapphire by low‐pressure metalorganic chemical vapor deposition , 1994 .

[6]  Takeshi Kuboyama,et al.  Properties of Ga1-xInxN Films Prepared by MOVPE , 1989 .

[7]  Shuji Nakamura,et al.  Photoreflectance investigations of the bowing parameter in AlGaN alloys lattice-matched to GaN , 1999 .

[8]  Akio Yamamoto,et al.  Band Gap of Hexagonal InN and InGaN Alloys , 2002 .

[9]  Isamu Akasaki,et al.  Optical band gap in Ga1−xInxN (0 , 1998 .

[10]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[11]  S. Misawa,et al.  Properties of AlxGa1−xN films prepared by reactive molecular beam epitaxy , 1982 .

[12]  Hiroshi Ogawa,et al.  Growth of AlxIn1−xN single crystal films by microwave-excited metalorganic vapor phase epitaxy , 1995 .

[13]  A.-B. Chen,et al.  Theory of AlN, GaN, InN and their alloys , 1997 .

[14]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[15]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[16]  Matthew D. McCluskey,et al.  LARGE BAND GAP BOWING OF INXGA1-XN ALLOYS , 1998 .

[17]  Oliver Ambacher,et al.  Energy gap and optical properties of InxGa1–xN , 2003 .

[18]  Zhe Chuan Feng,et al.  Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .

[19]  Isamu Akasaki,et al.  Anomalous features in the optical properties of Al1−xInxN on GaN grown by metal organic vapor phase epitaxy , 2000 .

[20]  John C. Roberts,et al.  Optical band gap dependence on composition and thickness of InxGa1−xN (0 , 1999 .

[21]  P. Perry,et al.  The optical absorption edge of single‐crystal AlN prepared by a close‐spaced vapor process , 1978 .

[22]  Theodore D. Moustakas,et al.  Density of states, hybridization, and band-gap evolution in AlxGa1-xN alloys , 1998 .

[23]  H. Amano,et al.  Structural and optical properties of AlInN and AlGaInN on GaN grown by metalorganic vapor phase epitaxy , 1998 .

[24]  Ruoff,et al.  High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition. , 1993, Physical review. B, Condensed matter.

[25]  V. Ustinov,et al.  Temperature dependence of the quantum dot lateral size in the Ge/Si(100) system , 2003 .

[26]  Oliver Ambacher,et al.  Determination of the Al mole fraction and the band gap bowing of epitaxial AlxGa1−xN films , 1997 .

[27]  H. Amano,et al.  The Dependence of the Band Gap on Alloy Composition in Strained AlGaN on GaN , 1998 .

[28]  Yen-Kuang Kuo,et al.  Band-Gap Bowing Parameter of the AlxGa1-xN Derived from Theoretical Simulation , 2002 .

[29]  H. Amano,et al.  Observation of photoluminescence from Al1−xInxN heteroepitaxial films grown by metalorganic vapor phase epitaxy , 1998 .

[30]  F. Bechstedt,et al.  First-principles calculations of gap bowing in In x Ga 1 − x N and In x Al 1 − x N alloys: Relation to structural and thermodynamic properties , 2002 .

[31]  David P. Bour,et al.  PHASE SEPARATION IN InGaN/GaN MULTIPLE QUANTUM WELLS , 1998 .

[32]  Bo Monemar,et al.  Fundamental energy gap of GaN from photoluminescence excitation spectra , 1974 .

[33]  Takashi Matsuoka,et al.  Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy , 1991 .

[34]  Ueno,et al.  Stability of the wurtzite-type structure under high pressure: GaN and InN. , 1994, Physical review. B, Condensed matter.

[35]  I. Akasaki,et al.  Edge emission of AlxGa1−xN , 1986 .

[36]  K. Brennan,et al.  Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part II. Ternary alloys AlxGa1−xN, InxGa1−xN, and InxAl1−xN , 2000 .

[37]  Alex Zunger,et al.  Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .

[38]  Heinz Schulz,et al.  Crystal structure refinement of AlN and GaN , 1977 .

[39]  Perlin,et al.  Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. , 1992, Physical review. B, Condensed matter.

[40]  Z. Feng,et al.  Optical transitions in InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1996 .

[41]  J. Sipe,et al.  Linear and non-linear spectroscopy of GaAs and GaP : theory versus experiment , 1998 .

[42]  Friedhelm Bechstedt,et al.  Gap bowing and Stokes shift in InxGa1−xN alloys: First-principles studies , 2002 .

[43]  Pierre Gibart,et al.  Indium incorporation above 800 °C during metalorganic vapor phase epitaxy of InGaN , 1999 .

[44]  Wayne R. McKinney,et al.  Dependence of the fundamental band gap of AlxGa1−xN on alloy composition and pressure , 1999 .

[45]  Isamu Akasaki,et al.  Energy band‐gap bowing parameter in an AlxGa1−x N alloy , 1987 .

[46]  J. Fritsch,et al.  First-principles local-orbital calculation of the structural and electronic properties of ordered and random alloys of GaN and AlN , 1999 .

[47]  Yotaro Murakami,et al.  Preparation and optical properties of Ga1−xInxN thin films , 1975 .

[48]  Peter Blaha,et al.  Full-potential, linearized augmented plane wave programs for crystalline systems , 1990 .

[49]  Shuji Nakamura,et al.  High-Power, Long-Lifetime InGaN Multi-Quantum-Well-Structure Laser Diodes , 1997 .

[50]  Joachim Piprek,et al.  Refractive index of AlGaInN alloys , 1996 .

[51]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[52]  R. D. Metcalfe,et al.  Growth and properties of GaxAl1-xN compounds , 1978 .

[53]  Gabby Sarusi,et al.  1 Gb/s Si high quantum efficiency monolithically integrable λ=0.88 μm detector , 1995 .

[54]  M. Scheffler,et al.  Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation , 2002 .

[55]  J. Connolly,et al.  Density-functional theory applied to phase transformations in transition-metal alloys , 1983 .

[56]  Robert M. Biefeld,et al.  The band-gap bowing of AlxGa1−xN alloys , 1999 .

[57]  M. Khan,et al.  Properties and ion implantation of AlxGa1−xN epitaxial single crystal films prepared by low pressure metalorganic chemical vapor deposition , 1983 .

[58]  Nelson,et al.  Consistent structural properties for AlN, GaN, and InN. , 1995, Physical review. B, Condensed matter.

[59]  Shuji Nakamura,et al.  III–V nitride based light-emitting devices , 1997 .

[60]  Ratna Naik,et al.  Optical and electrical properties of Al1−xInxN films grown by plasma source molecular-beam epitaxy , 2001 .

[61]  L. Romano,et al.  Structural and optical properties of pseudomorphic InxGa1−xN alloys , 1998 .

[62]  Joachim Piprek,et al.  Band gap bowing and refractive index spectra of polycrystalline AlxIn1−xN films deposited by sputtering , 1997 .

[63]  Cathy P. Foley,et al.  Optical band gap of indium nitride , 1986 .