Conditional edge-fault Hamiltonicity of augmented cubes

The augmented cube is a variation of hypercubes, it possesses many superior properties. In this paper, we show that, for any n-dimensional augmented cube (n>=3) with faulty edges up to 4n-8 in which each vertex is incident to at least two fault-free edges, there exists a fault-free Hamiltonian cycle. Our result is optimal with respect to the number of faulty edges tolerated.

[1]  Chang-Hsiung Tsai Linear array and ring embeddings in conditional faulty hypercubes , 2004, Theor. Comput. Sci..

[2]  Yu-Chee Tseng,et al.  Fault-Tolerant Ring Embedding in a Star Graph with Both Link and Node Failures , 1997, IEEE Trans. Parallel Distributed Syst..

[3]  Gen-Huey Chen,et al.  Fault-Free Hamiltonian Cycles in Faulty Arrangement Graphs , 1999, IEEE Trans. Parallel Distributed Syst..

[4]  Sun-Yuan Hsieh,et al.  Conditional Edge-Fault Hamiltonicity of Matching Composition Networks , 2009, IEEE Transactions on Parallel and Distributed Systems.

[5]  Dharma P. Agrawal,et al.  Generalized Hypercube and Hyperbus Structures for a Computer Network , 1984, IEEE Transactions on Computers.

[6]  Hyeong-Seok Lim,et al.  Fault-Hamiltonicity of hypercube-like interconnection networks , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[7]  Selim G. Akl Parallel computation: models and methods , 1997 .

[8]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[9]  Peter A. J. Hilbers,et al.  The Twisted Cube , 1987, PARLE.

[10]  Kemal Efe,et al.  The Crossed Cube Architecture for Parallel Computation , 1992, IEEE Trans. Parallel Distributed Syst..

[11]  Jun-Ming Xu,et al.  Fault-tolerant pancyclicity of augmented cubes , 2007, Inf. Process. Lett..

[12]  Kanad Ghose,et al.  The Mcube: a symmetrical cube based network with twisted links , 1995, Proceedings of 9th International Parallel Processing Symposium.

[13]  Václav Koubek,et al.  Long paths in hypercubes with a quadratic number of faults , 2009, Inf. Sci..

[14]  Sun-Yuan Hsieh,et al.  Cycle embedding of augmented cubes , 2007, Appl. Math. Comput..

[15]  Paul Cull,et al.  The Möbius Cubes , 1995, IEEE Trans. Computers.

[16]  Sun-Yuan Hsieh Fault-tolerant cycle embedding in the hypercube with more both faulty vertices and faulty edges , 2006, Parallel Comput..

[17]  Gen-Huey Chen,et al.  Longest Fault-Free Paths in Star Graphs with Edge Faults , 2001, IEEE Trans. Computers.

[18]  Pao-Lien Lai,et al.  Constructing the nearly shortest path in crossed cubes , 2009, Inf. Sci..

[19]  Shiying Wang,et al.  Path embeddings in faulty 3-ary n-cubes , 2010, Inf. Sci..

[20]  Cauligi S. Raghavendra,et al.  Embedding of Rings and Meshes onto Faulty Hypercubes Using Free Dimensions , 1994, IEEE Trans. Computers.

[21]  Jung-Sheng Fu,et al.  Embedding Hamiltonian cycles in alternating group graphs under conditional fault model , 2009, Inf. Sci..

[22]  Jun-Ming Xu,et al.  The super connectivity of augmented cubes , 2008, Inf. Process. Lett..

[23]  Yu-Liang Kuo,et al.  Node-disjoint paths in hierarchical hypercube networks , 2007, Inf. Sci..

[24]  Jung-Sheng Fu Fault-free Hamiltonian cycles in twisted cubes with conditional link faults , 2008, Theor. Comput. Sci..

[25]  Jun-Ming Xu,et al.  Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes , 2007, Parallel Comput..

[26]  Sun-Yuan Hsieh,et al.  Pancyclicity of Restricted Hypercube-Like Networks under the Conditional Fault Model , 2010, SIAM J. Discret. Math..

[27]  Sun-Yuan Hsieh,et al.  Embedding longest fault-free paths onto star graphs with more vertex faults , 2005, Theor. Comput. Sci..

[28]  Jimmy J. M. Tan,et al.  Long paths in hypercubes with conditional node-faults , 2009, Inf. Sci..

[29]  Toru Araki,et al.  Hamiltonian laceability of bubble-sort graphs with edge faults , 2007, Inf. Sci..

[30]  Jung-Sheng Fu,et al.  Fault-free Hamiltonian cycles in crossed cubes with conditional link faults , 2007, Inf. Sci..

[31]  Gen-Huey Chen,et al.  Longest fault-free paths in star graphs with vertex faults , 2001, Theor. Comput. Sci..

[32]  Xie-Bin Chen,et al.  Many-to-many disjoint paths in faulty hypercubes , 2009, Inf. Sci..

[33]  Jean-Claude Bermond Interconnection Networks , 1992 .

[34]  Jung-Sheng Fu,et al.  Hamiltonian connectivity of the WK-recursive network with faulty nodes , 2008, Inf. Sci..

[35]  Xiaofan Yang,et al.  Embedding paths and cycles in 3-ary n-cubes with faulty nodes and links , 2010, Inf. Sci..

[36]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[37]  Jung-Sheng Fu Fault-tolerant cycle embedding in the hypercube , 2003, Parallel Comput..

[38]  Jung-Sheng Fu Conditional fault-tolerant hamiltonicity of star graphs , 2007, Parallel Comput..

[39]  Yi-Ping Hung,et al.  Multicast communication in wormhole-routed 2D torus networks with hamiltonian cycle model , 2009, J. Syst. Archit..

[40]  Petr Gregor,et al.  Long paths and cycles in hypercubes with faulty vertices , 2009, Inf. Sci..

[41]  Jimmy J. M. Tan,et al.  Fault hamiltonicity of augmented cubes , 2005, Parallel Comput..

[42]  David J. Evans,et al.  The locally twisted cubes , 2005, Int. J. Comput. Math..

[43]  Tzung-Shi Chen,et al.  A dual-hamiltonian-path-based multicasting strategy for wormhole-routed star graph interconnection networks , 2002, J. Parallel Distributed Comput..