Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation.

[1]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[2]  H. Christofk,et al.  A label‐free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen , 2008, Proteomics.

[3]  D. Neil Hayes,et al.  LKB1 modulates lung cancer differentiation and metastasis , 2007, Nature.

[4]  E. Birney,et al.  Patterns of somatic mutation in human cancer genomes , 2007, Nature.

[5]  R. Marais,et al.  Melanoma biology and new targeted therapy , 2007, Nature.

[6]  Suzanne Schubbert,et al.  Deregulated Ras signaling in developmental disorders: new tricks for an old dog. , 2007, Current opinion in genetics & development.

[7]  N. Dhomen,et al.  New insight into BRAF mutations in cancer. , 2007, Current opinion in genetics & development.

[8]  L. Cantley,et al.  Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase , 2007, Proceedings of the National Academy of Sciences.

[9]  D. Hardie,et al.  AMP-activated protein kinase as a drug target. , 2007, Annual review of pharmacology and toxicology.

[10]  R. Shaw,et al.  Glucose metabolism and cancer. , 2006, Current opinion in cell biology.

[11]  David Carling,et al.  Tumor necrosis factor alpha-induced skeletal muscle insulin resistance involves suppression of AMP-kinase signaling. , 2006, Cell metabolism.

[12]  U. Rapp,et al.  Raf kinases: Oncogenesis and drug discovery , 2006, International journal of cancer.

[13]  S. Wilhelm,et al.  Discovery and development of sorafenib: a multikinase inhibitor for treating cancer , 2006, Nature Reviews Drug Discovery.

[14]  C. Springer,et al.  In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. , 2006, Cancer research.

[15]  E. Araki,et al.  AMPK and cell proliferation – AMPK as a therapeutic target for atherosclerosis and cancer , 2006, The Journal of physiology.

[16]  L. Chin,et al.  Comparative Oncogenomics Identifies NEDD9 as a Melanoma Metastasis Gene , 2006, Cell.

[17]  Kei Sakamoto,et al.  LKB1-dependent signaling pathways. , 2006, Annual review of biochemistry.

[18]  H. Ashrafian Cancer's sweet tooth: the Janus effect of glucose metabolism in tumorigenesis , 2006, The Lancet.

[19]  Todd R. Golub,et al.  BRAF mutation predicts sensitivity to MEK inhibition , 2006, Nature.

[20]  R. DePinho,et al.  The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin , 2005, Science.

[21]  Shailendra Giri,et al.  5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside Inhibits Cancer Cell Proliferation in Vitro and in Vivo via AMP-activated Protein Kinase* , 2005, Journal of Biological Chemistry.

[22]  M. Beeram,et al.  Raf: a strategic target for therapeutic development against cancer. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  J. Lyons,et al.  Recent progress in targeting the Raf/MEK/ERK pathway with inhibitors in cancer drug discovery. , 2005, Current opinion in pharmacology.

[24]  Hans Clevers,et al.  Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity. , 2005, Human molecular genetics.

[25]  Russell G. Jones,et al.  AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. , 2005, Molecular cell.

[26]  D. Hardie,et al.  New roles for the LKB1-->AMPK pathway. , 2005, Current opinion in cell biology.

[27]  N. Ruderman,et al.  AMPK, the metabolic syndrome and cancer. , 2005, Trends in pharmacological sciences.

[28]  A. Prescott,et al.  Analysis of the LKB1-STRAD-MO25 complex , 2004, Journal of Cell Science.

[29]  Richard Marais,et al.  The RAF proteins take centre stage , 2004, Nature Reviews Molecular Cell Biology.

[30]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[31]  Mathew J Garnett,et al.  Guilty as charged: B-RAF is a human oncogene. , 2004, Cancer cell.

[32]  N. Ruderman,et al.  AMP-activated protein kinase activators can inhibit the growth of prostate cancer cells by multiple mechanisms. , 2004, Biochemical and biophysical research communications.

[33]  R. DePinho,et al.  The LKB1 tumor suppressor negatively regulates mTOR signaling. , 2004, Cancer cell.

[34]  I. Hernán,et al.  De novo germline mutation in the serine–threonine kinase STK11/LKB1 gene associated with Peutz–Jeghers syndrome , 2004, Clinical genetics.

[35]  D. Barford,et al.  Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF , 2004, Cell.

[36]  Jérôme Boudeau,et al.  LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR‐1 , 2004, The EMBO journal.

[37]  Hans C Clevers,et al.  Complete Polarization of Single Intestinal Epithelial Cells upon Activation of LKB1 by STRAD , 2004, Cell.

[38]  T. Kawabe,et al.  Functional analysis of mutations within the kinase activation segment of B-Raf in human colorectal tumors. , 2003, Cancer research.

[39]  K. Inoki,et al.  TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival , 2003, Cell.

[40]  Jérôme Boudeau,et al.  Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade , 2003, Journal of biology.

[41]  D. Tuveson,et al.  Suppression of BRAF(V599E) in human melanoma abrogates transformation. , 2003, Cancer research.

[42]  Meenhard Herlyn,et al.  BRAF as a potential therapeutic target in melanoma and other malignancies. , 2003, Cancer cell.

[43]  Kun-Liang Guan,et al.  Mechanisms of regulating the Raf kinase family. , 2003, Cellular signalling.

[44]  Sophie G. Martin,et al.  A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity , 2003, Nature.

[45]  C. Smythe,et al.  Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. , 2002, The Biochemical journal.

[46]  Ronald A. DePinho,et al.  Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation , 2002, Nature.

[47]  David Sidransky,et al.  Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. , 2002, Cancer research.

[48]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[49]  G. Sapkota,et al.  Phosphorylation of the Protein Kinase Mutated in Peutz-Jeghers Cancer Syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent Protein Kinase, but Not Its Farnesylation at Cys433, Is Essential for LKB1 to Suppress Cell Growth* , 2001, The Journal of Biological Chemistry.

[50]  M. Yaffe,et al.  A motif-based profile scanning approach for genome-wide prediction of signaling pathways , 2001, Nature Biotechnology.

[51]  S. Lee,et al.  A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. , 2000, Analytical biochemistry.

[52]  D. Morton,et al.  The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. , 2000, Development.

[53]  T. Mäkelä,et al.  Growth suppression by Lkb1 is mediated by a G(1) cell cycle arrest. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  W. Bodmer,et al.  Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malignant melanomas. , 1999, The Journal of investigative dermatology.

[55]  P. Guldberg,et al.  Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma , 1999, Oncogene.

[56]  T. Vallenius,et al.  The LKB1 tumor suppressor kinase in human disease. , 2007, Biochimica et biophysica acta.

[57]  R. Marais,et al.  The role of B-RAF in melanoma , 2005, Cancer and Metastasis Reviews.

[58]  D. Carling,et al.  AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. , 2005, Cell metabolism.

[59]  Richard J. Shaw Inaugural Article: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress , 2004 .

[60]  David Carling,et al.  The AMP-activated protein kinase cascade--a unifying system for energy control. , 2004, Trends in biochemical sciences.

[61]  M. Carlson,et al.  Supplemental Data LKB 1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade , 2003 .

[62]  G. Sapkota,et al.  Identification and characterization of four novel phosphorylation sites (Ser 31 , Ser 325 , Thr 336 and Thr 366 ) on LKB1/STK11, the protein kinase mutated in Peutz–Jeghers cancer syndrome , 2022 .