The scale-invariant, temporal profile of neuronal avalanches in relation to cortical γ–oscillations

[1]  Pedro V. Carelli,et al.  Criticality between cortical states , 2018, bioRxiv.

[2]  G. Sumbre,et al.  Whole-Brain Neuronal Activity Displays Crackling Noise Dynamics , 2018, Neuron.

[3]  Arno Villringer,et al.  Multiple mechanisms link prestimulus neural oscillations to sensory responses , 2018, bioRxiv.

[4]  Satu Palva,et al.  Roles of Brain Criticality and Multiscale Oscillations in Temporal Predictions for Sensorimotor Processing , 2018, Trends in Neurosciences.

[5]  M. Copelli,et al.  Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: Continuously varying exponents mimic M/EEG results , 2018, bioRxiv.

[6]  Viktor K. Jirsa,et al.  Phase-lags in large scale brain synchronization: Methodological considerations and in-silico analysis , 2018, PLoS Comput. Biol..

[7]  M. A. Muñoz,et al.  Landau–Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization , 2018, Proceedings of the National Academy of Sciences.

[8]  Andreas Klaus,et al.  Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment , 2018, Translational Psychiatry.

[9]  Earl K Miller,et al.  Gamma and beta bursts during working memory readout suggest roles in its volitional control , 2017, Nature Communications.

[10]  Shan Yu,et al.  Maintained avalanche dynamics during task-induced changes of neuronal activity in nonhuman primates , 2017, eLife.

[11]  Leonardo L. Gollo,et al.  Criticality in the brain: A synthesis of neurobiology, models and cognition , 2017, Progress in Neurobiology.

[12]  R. Yuste,et al.  Neocortical activity is stimulus- and scale-invariant , 2017, PLoS ONE.

[13]  Rick Durrett,et al.  Temporal profiles of avalanches on networks , 2016, Nature Communications.

[14]  J. Touboul,et al.  Power-law statistics and universal scaling in the absence of criticality. , 2015, Physical review. E.

[15]  Oren Shriki,et al.  Deviations from Critical Dynamics in Interictal Epileptiform Activity , 2016, The Journal of Neuroscience.

[16]  M. A. Muñoz,et al.  Self-Organized Bistability Associated with First-Order Phase Transitions. , 2016, Physical review letters.

[17]  Mason A. Porter,et al.  Author Correction: The physics of spreading processes in multilayer networks , 2016, 1604.02021.

[18]  Aleena Shaukat,et al.  Statistical Evaluation of Waveform Collapse Reveals Scale-Free Properties of Neuronal Avalanches , 2016, Front. Comput. Neurosci..

[19]  E. Miller,et al.  Gamma and Beta Bursts Underlie Working Memory , 2016, Neuron.

[20]  Oren Shriki,et al.  Optimal Information Representation and Criticality in an Adaptive Sensory Recurrent Neuronal Network , 2016, PLoS Comput. Biol..

[21]  K. Y. Wong,et al.  Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems. , 2016, Physical review letters.

[22]  Edward T. Bullmore,et al.  Opening bottlenecks on weighted networks by local adaptation to cascade failures , 2015, J. Complex Networks.

[23]  Woodrow L. Shew,et al.  State-dependent intrinsic predictability of cortical network dynamics , 2015, PLoS Comput. Biol..

[24]  D. Plenz,et al.  Intrinsic excitability measures track antiepileptic drug action and uncover increasing/decreasing excitability over the wake/sleep cycle , 2015, Proceedings of the National Academy of Sciences.

[25]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[26]  Benjamin Brandt,et al.  Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells , 2015, eLife.

[27]  Andreas Klaus,et al.  Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state , 2015, eLife.

[28]  Enzo Tagliazucchi,et al.  How we move is universal: Scaling in the average shape of human activity , 2015, 1506.06717.

[29]  Michael Breakspear,et al.  Cortical burst dynamics predict clinical outcome early in extremely preterm infants. , 2015, Brain : a journal of neurology.

[30]  David J. Anderson,et al.  Ventromedial hypothalamic neurons control a defensive emotion state , 2015, eLife.

[31]  Woodrow L. Shew,et al.  Voltage Imaging of Waking Mouse Cortex Reveals Emergence of Critical Neuronal Dynamics , 2014, The Journal of Neuroscience.

[32]  D. Plenz,et al.  On the temporal organization of neuronal avalanches , 2014, Front. Syst. Neurosci..

[33]  Piet Van Mieghem,et al.  Epidemic processes in complex networks , 2014, ArXiv.

[34]  H. Peyton Young,et al.  Rapid innovation diffusion in social networks , 2014, Proceedings of the National Academy of Sciences.

[35]  Jochen Triesch,et al.  Spike avalanches in vivo suggest a driven, slightly subcritical brain state , 2014, Front. Syst. Neurosci..

[36]  Andreas Klaus,et al.  Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions , 2014, PloS one.

[37]  Michael Breakspear,et al.  Scale-Free Bursting in Human Cortex following Hypoxia at Birth , 2014, The Journal of Neuroscience.

[38]  M. Copelli,et al.  Undersampled Critical Branching Processes on Small-World and Random Networks Fail to Reproduce the Statistics of Spike Avalanches , 2014, PloS one.

[39]  P. Uhlhaas,et al.  Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? , 2014, Trends in Cognitive Sciences.

[40]  Jorge Hidalgo,et al.  Information-based fitness and the emergence of criticality in living systems , 2013, Proceedings of the National Academy of Sciences.

[41]  S. Bornholdt,et al.  Avalanches in Self-Organized Critical Neural Networks: A Minimal Model for the Neural SOC Universality Class , 2012, PloS one.

[42]  Lasse Laurson,et al.  Evolution of the average avalanche shape with the universality class , 2013, Nature Communications.

[43]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.

[44]  Viola Priesemann,et al.  Neuronal Avalanches Differ from Wakefulness to Deep Sleep – Evidence from Intracranial Depth Recordings in Humans , 2013, PLoS Comput. Biol..

[45]  Eric J Friedman,et al.  Hierarchical networks, power laws, and neuronal avalanches. , 2013, Chaos.

[46]  K. Linkenkaer-Hansen,et al.  Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws , 2013, Proceedings of the National Academy of Sciences.

[47]  W. Singer,et al.  Gamma oscillations: precise temporal coordination without a metronome , 2013, Trends in Cognitive Sciences.

[48]  D. Plenz,et al.  Neuronal Avalanches in the Resting MEG of the Human Brain , 2012, The Journal of Neuroscience.

[49]  J. Lisman,et al.  The θ-γ neural code. , 2013, Neuron.

[50]  W. Singer,et al.  Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large-Scale Networks , 2012, Neuron.

[51]  Yogesh Virkar,et al.  Power-law distributions in binned empirical data , 2012, 1208.3524.

[52]  K. Linkenkaer-Hansen,et al.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks , 2012, The Journal of Neuroscience.

[53]  Jayanth R Banavar,et al.  Scale invariance in the dynamics of spontaneous behavior , 2012, Proceedings of the National Academy of Sciences.

[54]  M. Magnasco,et al.  Self-Regulated Dynamical Criticality in Human ECoG , 2012, Front. Integr. Neurosci..

[55]  D. Plenz Neuronal avalanches and coherence potentials , 2012 .

[56]  John M. Beggs,et al.  Universal critical dynamics in high resolution neuronal avalanche data. , 2012, Physical review letters.

[57]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[58]  Woodrow L. Shew,et al.  Maximal Variability of Phase Synchrony in Cortical Networks with Neuronal Avalanches , 2012, The Journal of Neuroscience.

[59]  Pablo Balenzuela,et al.  Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis , 2012, Front. Physio..

[60]  J. Sethna,et al.  Avalanche spatial structure and multivariable scaling functions: sizes, heights, widths, and views through windows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Shan Yu,et al.  Higher-Order Interactions Characterized in Cortical Activity , 2011, The Journal of Neuroscience.

[62]  Andreas Klaus,et al.  Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches , 2011, PloS one.

[63]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[64]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[65]  Marc Benayoun,et al.  Avalanches in a Stochastic Model of Spiking Neurons , 2010, PLoS Comput. Biol..

[66]  A. Engel,et al.  Beta-band oscillations—signalling the status quo? , 2010, Current Opinion in Neurobiology.

[67]  J. Sethna,et al.  Beyond power laws: Universality in the average avalanche shape , 2009, 0911.2291.

[68]  D. Plenz,et al.  Spontaneous cortical activity in awake monkeys composed of neuronal avalanches , 2009, Proceedings of the National Academy of Sciences.

[69]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[70]  E Altshuler,et al.  Avalanche prediction in a self-organized pile of beads. , 2008, Physical review letters.

[71]  Viola Priesemann,et al.  Subsampling effects in neuronal avalanche distributions recorded in vivo , 2009, BMC Neuroscience.

[72]  Bruce J. West,et al.  Maximizing information exchange between complex networks , 2008 .

[73]  K. Linkenkaer-Hansen,et al.  Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations , 2008, Human brain mapping.

[74]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[75]  W. Singer,et al.  The gamma cycle , 2007, Trends in Neurosciences.

[76]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[77]  L. de Arcangelis,et al.  Self-organized criticality model for brain plasticity. , 2006, Physical review letters.

[78]  G. Buzsáki Rhythms of the brain , 2006 .

[79]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[80]  C. Castellano,et al.  Average shape of a fluctuation: universality in excursions of stochastic processes. , 2003, Physical review letters.

[81]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[82]  D. Kleinfeld,et al.  Traveling Electrical Waves in Cortex Insights from Phase Dynamics and Speculation on a Computational Role , 2001, Neuron.

[83]  J. Sethna,et al.  Crackling noise : Complex systems , 2001 .

[84]  W. Pritchard,et al.  The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram. , 1992, The International journal of neuroscience.

[85]  D. Pratt Reëmployment of the Psychoneurotic Ex-Soldier , 1945 .