Real quadratic fields admitting universal lattices of rank 7

In this paper, we will prove that if $d$ is sufficiently large square-free positive rational integer, then there is no integral septenary universal quadratic lattice over $\mathcal{O}_F$ where $F=\mathbb Q(\sqrt{d})$.

[1]  Byeong Moon Kim Universal octonary diagonal forms over some real quadratic fields , 2000 .

[2]  J. Hsia,et al.  Representations of positive definite quadratic forms. , 1978 .

[3]  M. Bhargava,et al.  Universal quadratic forms and the 290-Theorem , 2011 .

[4]  Pavlo Yatsyna A lower bound for the rank of a universal quadratic form with integer coefficients in a totally real number field , 2018, Commentarii Mathematici Helvetici.

[5]  O. O’Meara Introduction to quadratic forms , 1965 .

[6]  J. Svoboda,et al.  Universal quadratic forms over multiquadratic fields , 2017, 1703.03185.

[7]  Vítězslav Kala UNIVERSAL QUADRATIC FORMS AND ELEMENTS OF SMALL NORM IN REAL QUADRATIC FIELDS , 2015, Bulletin of the Australian Mathematical Society.

[8]  V'itvezslav Kala,et al.  Number fields without universal quadratic forms of small rank exist in most degrees , 2021, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  V. Blomer,et al.  Number fields without n-ary universal quadratic forms , 2015, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  Myung-Hwan Kim,et al.  Ternary universal integral quadratic forms over real quadratic fields , 1996 .

[11]  V. Kala,et al.  Lifting problem for universal quadratic forms , 2018, Advances in Mathematics.

[12]  Byeong Moon Kim Finiteness of real quadratic fields which admit positive integral diagonal septanary universal forms , 1999 .

[13]  Über die Darstellung total positiver Zahlen des Körpers R ( $$\sqrt 5 $$ ) als Summe von drei Quadraten5) als Summe von drei Quadraten , 1941 .