Phylogenomic Analysis of 155 Helminth Species Reveals Widespread Absence of Oxygen Metabolic Capacity

Abstract The terminal electron acceptor of most aerobic respiratory chains, cytochrome c oxidase (COX), has been highly conserved throughout evolution, from aerobic prokaryotes to complex eukaryotes. Oxygen metabolism in parasitic helminths differs significantly from that of most aerobic eukaryotes, as these organisms can switch between aerobic and anaerobic metabolisms throughout their life cycles. Early studies suggested a lack of COX activity in certain parasitic helminths, and the role of COX in helminth mitochondria remains unclear. To determine whether a functional COX is widely present in helminths, we analyzed the phylogenetic distribution of oxygen metabolism systems across 155 helminth genomes, investigating three distinct sets of protein-coding genes involved in different aspects of oxygen metabolism: COX and its assembly factors, peroxisomes, and the most abundant reactive oxygen species (ROS)-metabolizing proteins. While glycolytic and citric acid cycle enzymes are highly conserved in helminthic species, we observed an apparent widespread absence of essential COX genes across 52% of helminth species investigated. While the most common proteins involved in the defense against ROS are highly maintained across virtually all lineages, we also observed an apparent absence of essential peroxisomal protein-coding genes in 42% of species investigated. Our results suggest that a subset of parasitic helminths utilize oxygen differently from related, nonparasitic species such as Caenorhabditis elegans, with significant differences in their mitochondrial electron transport chains and peroxisomes. The identification of substantive differences between parasite and host metabolism offers a new avenue for the development of anthelmintic agents that could target these divergent pathways.

[1]  Annageldi Tayyrov,et al.  Genome sequence of the cardiopulmonary canid nematode Angiostrongylus vasorum reveals species-specific genes with potential involvement in coagulopathy. , 2021, Genomics.

[2]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[3]  Bill C. H. Chang,et al.  High-quality reference genome for Clonorchis sinensis. , 2021, Genomics.

[4]  D. Devos,et al.  Comparative genomics of peroxisome biogenesis proteins: making sense of the PEX mess , 2020, bioRxiv.

[5]  Peter B. McGarvey,et al.  UniProt: the universal protein knowledgebase in 2021 , 2020, Nucleic Acids Res..

[6]  Minoru Kanehisa,et al.  KEGG: integrating viruses and cellular organisms , 2020, Nucleic Acids Res..

[7]  P. Sternberg,et al.  Telomere-to-Telomere Genome Assembly of Bursaphelenchus okinawaensis Strain SH1 , 2020, Microbiology Resource Announcements.

[8]  Gavin Peter McStay,et al.  Functions of Cytochrome c Oxidase Assembly Factors , 2020, International journal of molecular sciences.

[9]  M. Vancová,et al.  Anaerobic peroxisomes in Mastigamoeba balamuthi , 2020, Proceedings of the National Academy of Sciences.

[10]  R. Płoski,et al.  Hybrid de novo whole-genome assembly and annotation of the model tapeworm Hymenolepis diminuta , 2019, Scientific Data.

[11]  Kathryn C Asalone,et al.  The genome of a subterrestrial nematode reveals adaptations to heat , 2019, Nature Communications.

[12]  Pasi K. Korhonen,et al.  High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing , 2019, GigaScience.

[13]  W. Martin,et al.  Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation , 2019, Free radical biology & medicine.

[14]  Bin Xu,et al.  An improved genome assembly of the fluke Schistosoma japonicum , 2019, PLoS neglected tropical diseases.

[15]  J. F. Staples,et al.  Differential post-translational modification of mitochondrial enzymes corresponds with metabolic suppression during hibernation. , 2019, American journal of physiology. Regulatory, integrative and comparative physiology.

[16]  A. Fraser,et al.  Rhodoquinone biosynthesis in C. elegans requires precursors generated by the kynurenine pathway , 2019, eLife.

[17]  Huanming Yang,et al.  New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes , 2019, BMC Genomics.

[18]  Simon C. Potter,et al.  The EMBL-EBI search and sequence analysis tools APIs in 2019 , 2019, Nucleic Acids Res..

[19]  A. Mortazavi,et al.  Hybrid Assembly of the Genome of the Entomopathogenic Nematode Steinernema carpocapsae Identifies the X-Chromosome , 2019, G3: Genes, Genomes, Genetics.

[20]  Q. Yu,et al.  The draft genome of Ditylenchus dipsaci , 2019, Journal of nematology.

[21]  Pasi K. Korhonen,et al.  Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium , 2019, PLoS pathogens.

[22]  G. Koutsovoulos,et al.  A draft genome for a species of Halicephalobus (Panagrolaimidae) , 2019, Journal of nematology.

[23]  M. Ragan,et al.  Whole-genome sequence of the oriental lung fluke Paragonimus westermani , 2018, GigaScience.

[24]  S. Kelly,et al.  OrthoFinder: phylogenetic orthology inference for comparative genomics , 2019, Genome Biology.

[25]  R. Sommer,et al.  Deep taxon sampling reveals the evolutionary dynamics of novel gene families in Pristionchus nematodes , 2018, Genome research.

[26]  M. Blaxter,et al.  Comparative genomics of 10 new Caenorhabditis species , 2019, Evolution letters.

[27]  Arun S. Seetharam,et al.  The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes , 2018, bioRxiv.

[28]  N. Holroyd,et al.  Biology and genome of a newly discovered sibling species of Caenorhabditis elegans , 2018, Nature Communications.

[29]  Hong Yin,et al.  The genome of tapeworm Taenia multiceps sheds light on understanding parasitic mechanism and control of coenurosis disease , 2018, DNA research : an international journal for rapid publication of reports on genes and genomes.

[30]  Philipp H. Schiffer,et al.  The gene regulatory program of Acrobeloides nanus reveals conservation of phylum-specific expression , 2018, Proceedings of the National Academy of Sciences.

[31]  S. Kelly,et al.  STAG: Species Tree Inference from All Genes , 2018, bioRxiv.

[32]  D. Gospodaryov,et al.  Alternative NAD(P)H dehydrogenase and alternative oxidase: Proposed physiological roles in animals. , 2018, Mitochondrion.

[33]  Philipp H. Schiffer,et al.  Evolutionary analysis indicates that DNA alkylation damage is a byproduct of cytosine DNA methyltransferase activity , 2018, Nature Genetics.

[34]  Cristel G. Thomas,et al.  Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins , 2018, Science.

[35]  U. Rao,et al.  Nematode Genome Announcement: A Draft Genome for Rice Root-Knot Nematode, Meloidogyne graminicola , 2018, Journal of nematology.

[36]  L. S. Swapna,et al.  Comparative genomics of the major parasitic worms , 2017, Nature Genetics.

[37]  P. Kwok,et al.  Comparative genome analysis of programmed DNA elimination in nematodes , 2017, Genome research.

[38]  R. Sommer,et al.  Single-Molecule Sequencing Reveals the Chromosome-Scale Genomic Architecture of the Nematode Model Organism Pristionchus pacificus. , 2017, Cell reports.

[39]  D. Corcoran,et al.  Genome Architecture and Evolution of a Unichromosomal Asexual Nematode , 2017, Current Biology.

[40]  Philipp H. Schiffer,et al.  Signatures of the Evolution of Parthenogenesis and Cryptobiosis in the Genomes of Panagrolaimid Nematodes , 2017, bioRxiv.

[41]  Kevin L. Howe,et al.  WormBase ParaSite − a comprehensive resource for helminth genomics , 2017, Molecular and biochemical parasitology.

[42]  Philipp H. Schiffer,et al.  Genome analysis of Diploscapter coronatus: insights into molecular peculiarities of a nematode with parthenogenetic reproduction , 2017, BMC Genomics.

[43]  M. Blaxter,et al.  Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode Oscheius tipulae To Identify Mutations Affecting Vulva Development , 2017, Genetics.

[44]  E. Danchin,et al.  Hybridization and polyploidy enable genomic plasticity without sex in the most devastating plant-parasitic nematodes , 2017, PLoS genetics.

[45]  S. Kelly,et al.  STRIDE: Species Tree Root Inference from Gene Duplication Events , 2017, bioRxiv.

[46]  M. Blaxter,et al.  Comparative Genomics of Apomictic Root-Knot Nematodes: Hybridization, Ploidy, and Dynamic Genome Change , 2017, bioRxiv.

[47]  A. Salim,et al.  The Echinococcus canadensis (G7) genome: a key knowledge of parasitic platyhelminth human diseases , 2017, BMC Genomics.

[48]  Songnian Hu,et al.  Comparative genomics reveals adaptive evolution of Asian tapeworm in switching to a new intermediate host , 2016, Nature Communications.

[49]  F. Chen,et al.  The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes , 2016, Proceedings of the Royal Society B: Biological Sciences.

[50]  E. Danchin,et al.  The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence , 2016, Genome Biology.

[51]  D. Serre,et al.  Population genomics of the filarial nematode parasite Wuchereria bancrofti from mosquitoes , 2016, Molecular ecology.

[52]  Tetsuya Hayashi,et al.  The Genomic Basis of Parasitism in the Strongyloides Clade of Nematodes , 2016, Nature Genetics.

[53]  Bill C. H. Chang,et al.  Phylogenomic and biogeographic reconstruction of the Trichinella complex , 2016, Nature Communications.

[54]  J. Tachezy,et al.  Evolutionary loss of peroxisomes – not limited to parasites , 2015, Biology Direct.

[55]  B. Williams,et al.  Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks , 2015, Genome Biology.

[56]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[57]  Cristel G. Thomas,et al.  Correction: Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes , 2015, PLoS genetics.

[58]  P. Sternberg,et al.  The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families , 2015, Nature Genetics.

[59]  M. Berriman,et al.  What helminth genomes have taught us about parasite evolution , 2014, Parasitology.

[60]  T. Santarius,et al.  The genome of the sparganosis tapeworm Spirometra erinaceieuropaei isolated from the biopsy of a migrating brain lesion , 2014, Genome Biology.

[61]  Jianbin Wang,et al.  Programmed DNA elimination in multicellular organisms. , 2014, Current opinion in genetics & development.

[62]  Bin Tean Teh,et al.  The Opisthorchis viverrini genome provides insights into life in the bile duct , 2014, Nature Communications.

[63]  Magdalena Zarowiecki,et al.  Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction , 2014, Nature Genetics.

[64]  Ross S Hall,et al.  Genome and transcriptome of the porcine whipworm Trichuris suis , 2014, Nature Genetics.

[65]  L. Bachmann,et al.  Comparative Genomics of Flatworms (Platyhelminthes) Reveals Shared Genomic Features of Ecto- and Endoparastic Neodermata , 2014, Genome biology and evolution.

[66]  N. Holroyd,et al.  The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode , 2014, Genome Biology.

[67]  Yat T. Tang,et al.  Genome of the human hookworm Necator americanus , 2014, Nature Genetics.

[68]  Philipp H. Schiffer,et al.  The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda , 2013, BMC Genomics.

[69]  Shengyue Wang,et al.  The genome of the hydatid tapeworm Echinococcus granulosus , 2013, Nature Genetics.

[70]  Abdul Jabbar,et al.  The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus , 2013, Genome Biology.

[71]  Paul W. Sternberg,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV A Lover and a Fighter: The Genome Sequence of an A Lover and a Fighter: The Genome Sequence of an Entomopathogenic Nematode Heterorhabditis bacteriophora Entomopathogenic Nematode Heterorhabditis bacteriophora , 2022 .

[72]  Paul W. Sternberg,et al.  The Draft Genome and Transcriptome of Panagrellus redivivus Are Shaped by the Harsh Demands of a Free-Living Lifestyle , 2013, Genetics.

[73]  Jeremy Zucker,et al.  Genomics of Loa loa, a Wolbachia-free filarial parasite of humans , 2013, Nature Genetics.

[74]  Kate S. Carroll,et al.  Cysteine-Mediated Redox Signaling: Chemistry, Biology, and Tools for Discovery , 2013, Chemical reviews.

[75]  Jacqueline A. Keane,et al.  The genomes of four tapeworm species reveal adaptations to parasitism , 2013, Nature.

[76]  S. Srinivasan,et al.  Cytochrome c oxidase dysfunction in oxidative stress. , 2012, Free radical biology & medicine.

[77]  S. Goto,et al.  The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[78]  T. Sankari,et al.  Characterization of cofactor-independent phosphoglycerate mutase isoform-1 (Wb-iPGM) gene: a drug and diagnostic target from human lymphatic filarial parasite, Wuchereria bancrofti. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[79]  W. Martin,et al.  Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes , 2012, Microbiology and Molecular Reviews.

[80]  Xuepeng Cai,et al.  Advances in the study of helminth mitochondrial genomes and their associated applications , 2012 .

[81]  Adhemar Zerlotini,et al.  A Systematically Improved High Quality Genome and Transcriptome of the Human Blood Fluke Schistosoma mansoni , 2012, PLoS neglected tropical diseases.

[82]  Alejandro Sanchez-Flores,et al.  Genomic Insights into the Origin of Parasitism in the Emerging Plant Pathogen Bursaphelenchus xylophilus , 2011, PLoS pathogens.

[83]  Elaine R. Mardis,et al.  The draft genome of the parasitic nematode Trichinella spiralis , 2011, Nature Genetics.

[84]  Ali Mortazavi,et al.  Scaffolding a Caenorhabditis nematode genome with RNA-seq. , 2010, Genome research.

[85]  V. Gladyshev,et al.  Linked Thioredoxin-Glutathione Systems in Platyhelminth Parasites , 2010, The Journal of Biological Chemistry.

[86]  A. Streit,et al.  Genetics, Chromatin Diminution, and Sex Chromosome Evolution in the Parasitic Nematode Genus Strongyloides , 2010, Current Biology.

[87]  Varghese P. Thomas,et al.  Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism , 2008, Proceedings of the National Academy of Sciences.

[88]  Rogerio Margis,et al.  Glutathione peroxidase family – an evolutionary overview , 2008, The FEBS journal.

[89]  Michael Schrader,et al.  Mitochondria and peroxisomes: Are the ‘Big Brother’ and the ‘Little Sister’ closer than assumed? , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[90]  Jonathan E. Allen,et al.  Draft Genome of the Filarial Nematode Parasite Brugia malayi , 2007, Science.

[91]  A. Tzagoloff,et al.  The scoop on Sco. , 2007, Molecular cell.

[92]  D. Winge,et al.  Functional Analysis of the Domains in Cox11* , 2005, Journal of Biological Chemistry.

[93]  Elias S. J. Arnér,et al.  Physiological functions of thioredoxin and thioredoxin reductase. , 2000, European journal of biochemistry.

[94]  D. Glerum,et al.  Submitochondrial distributions and stabilities of subunits 4, 5, and 6 of yeast cytochrome oxidase in assembly defective mutants , 1997, FEBS letters.

[95]  D. Glerum,et al.  Characterization of COX17, a Yeast Gene Involved in Copper Metabolism and Assembly of Cytochrome Oxidase* , 1996, The Journal of Biological Chemistry.

[96]  F. Müller,et al.  Chromatin diminution in nematode development. , 1992, Trends in genetics : TIG.

[97]  R. Okimoto,et al.  The mitochondrial genomes of two nematodes, Caenorhabditis elegans and Ascaris suum. , 1992, Genetics.

[98]  Michael Hiller,et al.  The genome of Schmidtea mediterranea and the evolution of core cellular mechanisms , 2018, Nat..

[99]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[100]  A. Tielens Energy generation in parasitic helminths. , 1994, Parasitology today.

[101]  I. Fridovich Superoxide dismutases: studies of structure and mechanism. , 1976, Advances in experimental medicine and biology.