Modelling and analysis of power consumption for component-based embedded software

With the increasing complexity of the real-time embedded software, the power consumption is becoming a real challenge in the system designs. In this paper, for modelling the component-based embedded software, the interface automata is extended by adding time intervals on the actions and assigning energy consumption rates on the states. The extensional formalism is called energy interface automata. Then the system designs are modelled by energy interface automaton networks which consist of a set of energy interface automata synchronized by shared actions. Based on analyzing the integer state space of the energy interface automaton networks and its compatible reachiability graph, we develop two algorithms for the problem of the minimal energy consumption calculation and the maximal energy consumption verification respectively.