스트림 질의의 동적 최적화를 위한 질의 계획 재구성 기법

최근 들어 데이터가 연속적으로 생성되므로 인해 디스크에 저장된 형태로 모델링되기 어려운 특성을 갖는 데이터 응용환경에 대한 관심이 증대하고 있다. 스트림 데이터를 대상으로 이루어지는 스트림 질의는 저장된 릴레이션 내의 데이터를 대상으로 한번 적용되고 마는 기존의 데이터 응용에서와는 달리, 한번 등록이 되면 계속적으로 입력 데이터 스트림을 감시하다가 질의를 만족시키는 투플이 발생될 때마다 결과를 출력하는 연속성을 갖는다. 이러한 데이터 스트림 처리 시스템에서 성능 향상을 위한 질의 계획 최적화에 대한 연구가 이루어지고 있으며, 이를 위한 하나의 방법으로 현재 사용중인 질의 계획에서 질의 계획의 일부를 재구성하기 위해서 최적화 대상 질의 계획으로의 입력을 중단하고 최적화된 새로운 질의 계획으로 바꾸어 임시 저장된 데이터를 새로운 질의 계획에 입력하는 방법이 이용되고 있다. 그러나 이 방법을 사용하는 경우 입력 데이터 버퍼링을 위한 저장공간에 대한 비용이 증가하고, 부정확한 값을 산출을 유발할 수 있는 등 몇 가지 문제점을 안고 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 최적화 대상이 되는 질의 계획을 일시적으로 중복시켜 최적화가 진행되고 있는 과정 중에도 기존의 질의 계획이 입력 스트림을 계속 처리하고, 최적화된 새로운 질의 계획으로 입력 스트림을 처리하도록 하는 일시 중복을 이용한 동적 질의 계획 재구성 기법을 제시하였다.