Limited ionicity in poor protic ionic liquids: Association Gibbs energies.

Protic ionic liquids (PILs), made from anhydrous mixtures of Bronsted acids HA and bases B (HA + B → BH+ + A-), occasionally suffer from limited ionicity. In cases of "poor" PILs (<10% ionicity, e.g., using carboxylic acids), past simulations have hinted that ion-pair association, more than incomplete proton transfer, is at fault. To improve upon the Fuoss equation for predicting the degree of ion pairing, new electrostatic equations (including induced dipoles) are presented, for ion-pair and other associations that occur in anhydrous amine/carboxylic acid mixtures. The equations present the association Gibbs energies ΔGA (and thus the association constants KA) as functions of three fundamental properties: the acid/base mixing ratio (n = xA/xB), the HA-to-B proton-transfer strength (ΔpKa,ε=78), and the dielectric constant (relative permittivity) of the mixture (ε). Parameter values were obtained from fits to constant-dielectric quantum chemistry data (obtained and presented here). These ΔGA functions were then used to predict ΔGioniz values for the net ion-generating (autoionization) equilibrium in carboxylic acid/amine mixtures: 2B(HA)n⇄B(HA)n-dHB++A(HA)n+d-1 -, where n = xA/xB and d = degree of disproportionation. The agreement with experiment was excellent, demonstrating that these equations could have useful predictive power.

[1]  A. L. East,et al.  The Transition (vs ΔpKa) from Triple Ions to Free Cations in Poor Protic Ionic Liquids Made from Weak Acids , 2022, ECS Transactions.

[2]  B. Kirchner,et al.  Charge transfer and polarisability in ionic liquids: a case study. , 2022, Physical chemistry chemical physics : PCCP.

[3]  Darpan Patel,et al.  Semicontinuum (Cluster-Continuum) Modeling of Acid-Catalyzed Aqueous Reactions: Alkene Hydration. , 2020, The journal of physical chemistry. A.

[4]  K. Johnson,et al.  Limited Ionicity in Protic Ionic Liquids: Organic Acid/Trialkylamine Mixtures , 2020, ECS Meeting Abstracts.

[5]  Steven P. Brown,et al.  Structure Effects on the Ionicity of Protic Ionic Liquids. , 2020, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Yunqi Shao,et al.  Role of Viscosity in Deviations from the Nernst–Einstein Relation , 2019, The journal of physical chemistry. B.

[7]  K. R. Harris On the Use of the Angell-Walden Equation to Determine the "Ionicity" of Molten Salts and Ionic Liquids. , 2019, The journal of physical chemistry. B.

[8]  F. Philippi,et al.  Density Functional Theory Descriptors for Ionic Liquids and the Introduction of a Coulomb Correction. , 2019, The journal of physical chemistry. A.

[9]  C. Angell,et al.  Proton Transfer and Ionicity: An 15N NMR Study of Pyridine Base Protonation. , 2019, The journal of physical chemistry. B.

[10]  F. Philippi,et al.  Density Functional Theory Descriptors for Ionic Liquids and the Charge-Transfer Interpretation of the Haven Ratio. , 2019, The journal of physical chemistry. A.

[11]  A. L. L. East,et al.  The origin of the conductivity maximum vs. mixing ratio in pyridine/acetic acid and water/acetic acid. , 2018, The Journal of chemical physics.

[12]  K. R. Harris Can the Transport Properties of Molten Salts and Ionic Liquids Be Used To Determine Ion Association? , 2016, The journal of physical chemistry. B.

[13]  C. Angell,et al.  NMR Characterization of Ionicity and Transport Properties for a Series of Diethylmethylamine Based Protic Ionic Liquids. , 2016, The journal of physical chemistry. B.

[14]  Oldamur Hollóczki,et al.  Ion pairing in ionic liquids , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  C. Drummond,et al.  Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. , 2015, Chemical reviews.

[16]  A. Goriely,et al.  Are Room-Temperature Ionic Liquids Dilute Electrolytes? , 2014, The journal of physical chemistry letters.

[17]  T. Welton,et al.  On the origin of ionicity in ionic liquids. Ion pairing versus charge transfer. , 2014, Physical chemistry chemical physics : PCCP.

[18]  H. Gores,et al.  Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot † , 2010 .

[19]  M. Watanabe,et al.  Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. , 2010, Physical chemistry chemical physics : PCCP.

[20]  B. Kirchner,et al.  Are there stable ion-pairs in room-temperature ionic liquids? Molecular dynamics simulations of 1-n-butyl-3-methylimidazolium hexafluorophosphate. , 2009, Journal of the American Chemical Society.

[21]  E. Maginn,et al.  Molecular simulation of ionic liquids: current status and future opportunities , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  Maria Forsyth,et al.  On the concept of ionicity in ionic liquids. , 2009, Physical chemistry chemical physics : PCCP.

[23]  S. Obeidi,et al.  Combined analysis of self-diffusion, conductivity, and viscosity data on room temperature ionic liquids , 2009 .

[24]  B. Roling,et al.  Enhanced lithium transference numbers in ionic liquid electrolytes. , 2008, The journal of physical chemistry. B.

[25]  R. Torresi,et al.  Transport coefficients, Raman spectroscopy, and computer simulation of lithium salt solutions in an ionic liquid. , 2008, The journal of physical chemistry. B.

[26]  Tamar L Greaves,et al.  Protic ionic liquids: properties and applications. , 2008, Chemical reviews.

[27]  C. Angell,et al.  Parallel developments in aprotic and protic ionic liquids: physical chemistry and applications. , 2007, Accounts of chemical research.

[28]  S. Balasubramanian,et al.  Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. , 2007, The Journal of chemical physics.

[29]  Kikuko Hayamizu,et al.  How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. , 2006, The journal of physical chemistry. B.

[30]  R. Treble,et al.  The volatilities and conductivities of ionic liquids — Gc–ms methodology and preliminary studies of acetic acid – base systems , 2006 .

[31]  Wu Xu,et al.  Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of DeltapKa from aqueous solutions. , 2003, Journal of the American Chemical Society.

[32]  U. Kaatze,et al.  Complex formation in binary propionic acid-triethylamine mixtures: A dielectric relaxation and titration study , 2003 .

[33]  Wu Xu,et al.  Ionic liquids: Ion mobilities, glass temperatures, and fragilities , 2003 .

[34]  E. Maginn,et al.  Molecular Dynamics Study of the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate , 2002 .

[35]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[36]  M. Watanabe,et al.  Pulsed-Gradient Spin−Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids , 2001 .

[37]  J. Przybylski,et al.  Dielectric, acoustic, densimetric and viscosimetric investigations of the tributylamine + propionic acid system , 2000 .

[38]  J. Tomasi,et al.  The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level , 1999 .

[39]  J. Perram,et al.  Monte Carlo investigations of Coulombic correlations in lattice gas models , 1993 .

[40]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[41]  M. Hojo,et al.  Triple-ion formation and acid–base strength of ions in protophobic aprotic solvents , 1992 .

[42]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[43]  Graeme E. Murch,et al.  The haven ratio in fast ionic conductors , 1982 .

[44]  E. Wilhelm,et al.  Molecular interactions in mixtures of carboxylic acids with amines. 2. Volumetric, conductimetric, and NMR properties , 1981 .

[45]  P. Huyskens,et al.  Influence of the dielectric constant on the viscosity and on the formation of conducting ions in binary carboxylic acids-triethylamine mixtures , 1980 .

[46]  I. R. Mcdonald,et al.  Statistical mechanics of dense ionized matter. IV. Density and charge fluctuations in a simple molten salt , 1975 .

[47]  R. Kikuchi,et al.  Cation Diffusion and Conductivity in Solid Electrolytes. I , 1971 .

[48]  R. Kikuchi,et al.  Cation Diffusion and Conductivity in Solid Electrolytes. II. Mathematical , 1971 .

[49]  B. Berne,et al.  On the Kinetic Theory of Dense Fluids. XVI. The Ideal Ionic Melt , 1964 .

[50]  R. Laity INTERIONIC FRICTION COEFFICIENTS IN MOLTEN SALTS , 1960 .

[51]  R. M. Fuoss Ionic Association. III. The Equilibrium between Ion Pairs and Free Ions , 1958 .

[52]  Y. Haven,et al.  Correlation factors for diffusion in solids. Part 2.—Indirect interstitial mechanism , 1958 .

[53]  J. Kitchener,et al.  Self-diffusion in molten sodium chloride: a test of the applicability of the Nernst—Einstein equation , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  J. Kitchener,et al.  Test of the Applicability of the Nernst‐Einstein Equation to Self‐Diffusion and Conduction of Ions in Molten Sodium Chloride , 1956 .

[55]  W. D. Compton Self-Diffusion and Conductivity in Silver Chloride , 1956 .

[56]  Y. Haven,et al.  Correlation factors for diffusion in solids , 1956 .

[57]  A. Klemm Thermodynamik der Transportvorgänge in Ionengemischen und ihre Anwendung auf isotopenhaltige Salze und Metalle , 1953 .

[58]  R. Fuoss,et al.  Properties of Electrolytic Solutions. IV. The Conductance Minimum and the Formation of Triple Ions Due to the Action of Coulomb Forces1 , 1933 .

[59]  L. E. Swearingen,et al.  The System Pyridine–Acetic Acid. III. Electrical Conductance. , 1933 .

[60]  H. Patten Influence of the Solvent in Electrolytic Conduction , 1901 .