Design of an Ultra-Low Power CT ΣΔ A/D Modulator in 65 nm CMOS for Cardiac Pacemakers: From System Synthesis to Circuit Implementation

A high performance, ultra-low power, fully differen- tial 2 nd -order continuous-time �� analogue-to-digital modulator for cardiac pacemakers is presented in this paper. The entire design procedure is described in detail from the high-level system synthesis in both discrete and continuous-time domain, to the low-level circuit implementation of key functional blocks of the modulator. The power consumption of the designed modulator is rated at 182 nA from a 1.2 V power supply, meeting the ultra- low power requirement of the cardiac pacemaker applications. A 65 nm CMOS technology is employed to implement the �� modulator. The modulator achieves a simulated SNR of 53.8 dB over a 400 Hz signal bandwidth, with 32 KHz sampling frequency and an oversampling ratio of 40. The active area of the modulator is 0.45 × 0.50mm 2 .

[1]  A. Rusu,et al.  A Low-Power CT Incremental 3rd Order /spl Sigma//spl Delta/ ADC for Biosensor Applications , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Bernhard E. Boser,et al.  The Design of Sigma-Delta Modulation Analog-to-Digit a 1 Converters , 2004 .

[3]  Maurits Ortmanns,et al.  Continuous time sigma-delta A/D conversion : fundamentals, performance limits and robust implementations , 2006 .

[4]  Wouter A. Serdijn,et al.  A Sub-Microwatt Asynchronous Level-Crossing ADC for Biomedical Applications , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[6]  O. Aquilina,et al.  A brief history of cardiac pacing , 2006, Images in paediatric cardiology.

[7]  Antonio Torralba,et al.  Compact low-power implementation for continuous-time ΣΔ modulators , 2013, Integr..

[8]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[9]  Shouli Yan,et al.  A 2.7-mW 2-MHz Continuous-Time $\Sigma \Delta$ Modulator With a Hybrid Active–Passive Loop Filter , 2008, IEEE Journal of Solid-State Circuits.

[10]  Chao Yuan,et al.  A 281-nW 43.3 fJ/conversion-step 8-ENOB 25-kS/s asynchronous SAR ADC in 65nm CMOS for biomedical applications , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).

[11]  Paul R. Gray,et al.  A 10 b, 20 Msample/s, 35 mW pipeline A/D converter , 1995, IEEE J. Solid State Circuits.

[12]  David A. Johns,et al.  Analog Integrated Circuit Design , 1996 .

[13]  Yong Lian,et al.  A 0.6-V 82-dB 28.6- W Continuous-Time , 2011 .

[14]  Jia Hao Cheong,et al.  A 400-nW 19.5-fJ/Conversion-Step 8-ENOB 80-kS/s SAR ADC in 0.18- $\mu\hbox{m}$ CMOS , 2011, IEEE Transactions on Circuits and Systems II: Express Briefs.

[15]  Li-Rong Zheng,et al.  78 nW ultra-low-power 17 kS/s two-step-successive approximation register analogue-to-digital converter for RFID and sensing applications , 2012, IET Circuits Devices Syst..

[16]  Ameya Bhide,et al.  A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-$\mu$m CMOS for Medical Implant Devices , 2012, IEEE Journal of Solid-State Circuits.

[17]  Yong Lian,et al.  A 0.6-V 82-dB 28.6- $\mu$W Continuous-Time Audio Delta-Sigma Modulator , 2011, IEEE Journal of Solid-State Circuits.

[18]  Daniel J. Inman,et al.  Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters , 2012 .

[19]  Daniela De Venuto,et al.  0.8 µW 12-bit SAR ADC sensors interface for RFID applications , 2010, Microelectron. J..