Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility

This study exams a Pareto optimal insurance problem, where the insured maximizes her rank-dependent utility and the insurer employs the mean-variance premium principle. To eliminate some possible moral hazard issues, we only consider moral-hazard-free insurance contracts that obey the incentive compatibility constraint. The insurance problem is first formulated as a non-concave maximization problem involving Choquet expectation, then turned into a concave quantile optimization problem and finally solved by calculus of variations method. The optimal contract is expressed by a semi-linear second order double-obstacle ordinary differential equation with nonlocal operator. When the probability weighting function has a density, an effective numerical method is proposed to compute the optimal contract.

[1]  D. Zagrodny,et al.  Insurer's optimal reinsurance strategies , 2000 .

[2]  Z. Xu Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework , 2018, 1803.02546.

[3]  Z. Xu A NOTE ON THE QUANTILE FORMULATION , 2014, 1403.7269.

[4]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[5]  X. Zhou,et al.  ARROW–DEBREU EQUILIBRIA FOR RANK‐DEPENDENT UTILITIES , 2016 .

[6]  Lola L. Lopes,et al.  [Advances in Experimental Social Psychology] Advances in Experimental Social Psychology Volume 20 Volume 20 || Between Hope and Fear: The Psychology of Risk , 1987 .

[7]  H. Gerber,et al.  On convex principles of premium calculation , 1985 .

[8]  Z. Xu,et al.  Optimal Portfolio Selection With VaR and Portfolio Insurance Constraints Under Rank-Dependent Expected Utility Theory , 2021, SSRN Electronic Journal.

[9]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[10]  Guillaume Carlier,et al.  Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities , 2008 .

[11]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[12]  Hanqing Jin,et al.  BEHAVIORAL PORTFOLIO SELECTION IN CONTINUOUS TIME , 2007, 0709.2830.

[13]  A. Chateauneuf,et al.  Optimal risk-sharing rules and equilibria with Choquet-expected-utility , 2000 .

[14]  J. Quiggin A theory of anticipated utility , 1982 .

[15]  X. Zhou,et al.  PORTFOLIO CHOICE VIA QUANTILES , 2010 .

[16]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[17]  G. Carlier,et al.  A numerical approach for a class of risk-sharing problems , 2011 .

[18]  Stelios Kafandaris,et al.  Practical Risk Theory for Actuaries , 1995 .

[19]  M. Kaluszka Optimal reinsurance under mean-variance premium principles , 2001 .

[20]  Pengyu Wei Risk management with weighted VaR , 2017 .

[21]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[22]  R. Mehra,et al.  THE EQUITY PREMIUM A Puzzle , 1985 .

[23]  X. Zhou,et al.  Optimal stopping under probability distortion. , 2011, 1103.1755.

[24]  Hailiang Yang,et al.  Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle , 2014 .

[25]  Marco Scarsini,et al.  Optimal risk sharing with background risk , 2007, J. Econ. Theory.

[26]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[27]  Z. Xu A new characterization of comonotonicity and its application in behavioral finance , 2013, 1311.6080.

[28]  On the design of optimal insurance policies under manipulation of audit cost , 2000 .

[29]  X. Zhou,et al.  Optimal insurance under rank‐dependent utility and incentive compatibility , 2018, Mathematical Finance.

[30]  X. Zhou,et al.  OPTIMAL INSURANCE DESIGN UNDER RANK‐DEPENDENT EXPECTED UTILITY , 2015 .

[31]  V. Young,et al.  Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin , 2020, 2007.02547.

[32]  L. J. Savage,et al.  The Utility Analysis of Choices Involving Risk , 1948, Journal of Political Economy.

[33]  Zuo Quan Xu,et al.  A Robust Markowitz Mean-Variance Portfolio Selection Model with an Intractable Claim , 2016, SIAM J. Financial Math..

[34]  Dynamic optimal reinsurance and dividend-payout in finite time horizon , 2020, 2008.00391.

[35]  Gur Huberman,et al.  Optimal insurance policy indemnity schedules , 1983 .