Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility
暂无分享,去创建一个
[1] D. Zagrodny,et al. Insurer's optimal reinsurance strategies , 2000 .
[2] Z. Xu. Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework , 2018, 1803.02546.
[3] Z. Xu. A NOTE ON THE QUANTILE FORMULATION , 2014, 1403.7269.
[4] A. Tversky,et al. Prospect theory: an analysis of decision under risk — Source link , 2007 .
[5] X. Zhou,et al. ARROW–DEBREU EQUILIBRIA FOR RANK‐DEPENDENT UTILITIES , 2016 .
[6] Lola L. Lopes,et al. [Advances in Experimental Social Psychology] Advances in Experimental Social Psychology Volume 20 Volume 20 || Between Hope and Fear: The Psychology of Risk , 1987 .
[7] H. Gerber,et al. On convex principles of premium calculation , 1985 .
[8] Z. Xu,et al. Optimal Portfolio Selection With VaR and Portfolio Insurance Constraints Under Rank-Dependent Expected Utility Theory , 2021, SSRN Electronic Journal.
[9] M. Allais. Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .
[10] Guillaume Carlier,et al. Two-persons efficient risk-sharing and equilibria for concave law-invariant utilities , 2008 .
[11] A. Tversky,et al. Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .
[12] Hanqing Jin,et al. BEHAVIORAL PORTFOLIO SELECTION IN CONTINUOUS TIME , 2007, 0709.2830.
[13] A. Chateauneuf,et al. Optimal risk-sharing rules and equilibria with Choquet-expected-utility , 2000 .
[14] J. Quiggin. A theory of anticipated utility , 1982 .
[15] X. Zhou,et al. PORTFOLIO CHOICE VIA QUANTILES , 2010 .
[16] D. Ellsberg. Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .
[17] G. Carlier,et al. A numerical approach for a class of risk-sharing problems , 2011 .
[18] Stelios Kafandaris,et al. Practical Risk Theory for Actuaries , 1995 .
[19] M. Kaluszka. Optimal reinsurance under mean-variance premium principles , 2001 .
[20] Pengyu Wei. Risk management with weighted VaR , 2017 .
[21] A. Tversky,et al. Advances in prospect theory: Cumulative representation of uncertainty , 1992 .
[22] R. Mehra,et al. THE EQUITY PREMIUM A Puzzle , 1985 .
[23] X. Zhou,et al. Optimal stopping under probability distortion. , 2011, 1103.1755.
[24] Hailiang Yang,et al. Optimal risk and dividend control problem with fixed costs and salvage value: Variance premium principle , 2014 .
[25] Marco Scarsini,et al. Optimal risk sharing with background risk , 2007, J. Econ. Theory.
[26] M. Yaari. The Dual Theory of Choice under Risk , 1987 .
[27] Z. Xu. A new characterization of comonotonicity and its application in behavioral finance , 2013, 1311.6080.
[28] On the design of optimal insurance policies under manipulation of audit cost , 2000 .
[29] X. Zhou,et al. Optimal insurance under rank‐dependent utility and incentive compatibility , 2018, Mathematical Finance.
[30] X. Zhou,et al. OPTIMAL INSURANCE DESIGN UNDER RANK‐DEPENDENT EXPECTED UTILITY , 2015 .
[31] V. Young,et al. Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin , 2020, 2007.02547.
[32] L. J. Savage,et al. The Utility Analysis of Choices Involving Risk , 1948, Journal of Political Economy.
[33] Zuo Quan Xu,et al. A Robust Markowitz Mean-Variance Portfolio Selection Model with an Intractable Claim , 2016, SIAM J. Financial Math..
[34] Dynamic optimal reinsurance and dividend-payout in finite time horizon , 2020, 2008.00391.
[35] Gur Huberman,et al. Optimal insurance policy indemnity schedules , 1983 .