ECG Artifact Removal from Surface EMG Signals by Combining Empirical Mode Decomposition and Independent Component Analysis

The electrocardiography (ECG) artifact in surface electromyography (sEMG) is a major source of noise influencing the analyses. Moreover, in many cases the sEMG signal is the only available signal, making this removal more complicated. We compare the performance of two recently described single channel blind source separation methods with the commonly used template subtraction method on both simulations and real-life data. These two methods decompose a single channel recording into a multichannel representation before applying independent component analysis to these multichannel data. The decomposition methods are the wavelet decomposition and ensemble empirical mode decomposition (EEMD). The EEMD based single channel technique shows better performance compared to template subtraction and the wavelet based alternative for both high and low signal-to-artifact ratio and for simulated and real-life data, but at the expense of a higher computational load. We conclude that the EEMD based method has its potential in eliminating spike-like artifacts in electrophysiological signals.

[1]  A Bartolo,et al.  Analysis of diaphragm EMG signals: comparison of gating vs. subtraction for removal of ECG contamination. , 1996, Journal of applied physiology.

[2]  Thierry Dutoit,et al.  Cancelling ECG Artifacts in EEG Using a Modified Independent Component Analysis Approach , 2008, EURASIP J. Adv. Signal Process..

[3]  P. Hassmén,et al.  Psychophysiological stress and emg activity of the trapezius muscle , 1994, International journal of behavioral medicine.

[4]  F.C. Morabito,et al.  Neural-ICA and wavelet transform for artifacts removal in surface EMG , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[5]  Sabine Van Huffel,et al.  Source Separation From Single-Channel Recordings by Combining Empirical-Mode Decomposition and Independent Component Analysis , 2010, IEEE Transactions on Biomedical Engineering.

[6]  E L Morin,et al.  Sampling, noise-reduction and amplitude estimation issues in surface electromyography. , 2002, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology.

[7]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[9]  Ping Zhou,et al.  Eliminating cardiac contamination from myoelectric control signals developed by targeted muscle reinnervation. , 2006, Physiological measurement.

[10]  S. Van Huffel,et al.  Wavelet-Independent Component Analysis to remove Electrocardiography Contamination in surface Electromyography , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[11]  Paulo Gonçalves,et al.  Empirical Mode Decompositions as Data-Driven Wavelet-like Expansions , 2004, Int. J. Wavelets Multiresolution Inf. Process..

[12]  M.E. Davies,et al.  Source separation using single channel ICA , 2007, Signal Process..