Interrelated Clustering: An Approach for Gene Expression Data Analysis

[1]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[2]  M. Fournier,et al.  High-sensitivity array analysis of gene expression for the early detection of disseminated breast tumor cells in peripheral blood , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[4]  J. Thomas,et al.  An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. , 2001, Genome research.

[5]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[6]  Alfonso Valencia,et al.  A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..

[7]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[8]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[9]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[10]  Nir Friedman,et al.  Class discovery in gene expression data , 2001, RECOMB.

[11]  R. W. Davis,et al.  Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Neal S. Holter,et al.  Fundamental patterns underlying gene expression profiles: simplicity from complexity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. Brown,et al.  Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Caligiuri,et al.  Expression profiling reveals fundamental biological differences in acute myeloid leukemia with isolated trisomy 8 and normal cytogenetics. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Ron Shamir,et al.  Clustering Gene Expression Patterns , 1999, J. Comput. Biol..

[17]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Khoon-Yen Tay,et al.  Genome-wide gene expression profiles of the developing mouse hippocampus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jason Weston,et al.  Gene functional classification from heterogeneous data , 2001, RECOMB.

[20]  Gregory R. Grant,et al.  Generation of patterns from gene expression data by assigning confidence to differentially expressed genes , 2000, Bioinform..

[21]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[22]  Jill P. Mesirov,et al.  Class prediction and discovery using gene expression data , 2000, RECOMB '00.

[23]  M. Xiong,et al.  Recursive partitioning for tumor classification with gene expression microarray data , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Terence P. Speed,et al.  Normalization for cDNA microarry data , 2001, SPIE BiOS.

[25]  L. Penland,et al.  Use of a cDNA microarray to analyse gene expression patterns in human cancer , 1996, Nature Genetics.

[26]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Botstein,et al.  The transcriptional program in the response of human fibroblasts to serum. , 1999, Science.

[28]  R. Tibshirani,et al.  Supervised harvesting of expression trees , 2001, Genome Biology.

[29]  W H Wong,et al.  Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[31]  J. J. Chen,et al.  Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetry detection. , 1998, Genomics.

[32]  E. Wolski,et al.  Normalization strategies for cDNA microarrays. , 2000, Nucleic acids research.

[33]  P. Brown,et al.  A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. , 1996, Genome research.

[34]  A. Zhang,et al.  A Maximum Entropy Approach to Classifying Gene Array Data Sets , 2001 .

[35]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Francisco Azuaje,et al.  Making genome expression data meaningful: prediction and discovery of classes of cancer through a connectionist learning approach , 2000, Proceedings IEEE International Symposium on Bio-Informatics and Biomedical Engineering.

[37]  Richard M. Karp,et al.  CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts , 2001, ISMB.

[38]  Ashim Garg,et al.  Interactive Visual Framework for Detecting Clusters of a Multidimensional Dataset , 2001 .

[39]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..

[40]  S. Nelson,et al.  Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. , 1998, Nucleic acids research.

[41]  D. Lockhart,et al.  Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  I. Mian,et al.  Analysis of molecular profile data using generative and discriminative methods. , 2000, Physiological genomics.

[43]  G. Getz,et al.  Coupled two-way clustering analysis of gene microarray data. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Nir Friedman,et al.  Context-Specific Bayesian Clustering for Gene Expression Data , 2002, J. Comput. Biol..

[45]  M. Bittner,et al.  Data management and analysis for gene expression arrays , 1998, Nature Genetics.

[46]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.