Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation
暂无分享,去创建一个
[1] Georgios Akrivis,et al. Finite difference discretization of the cubic Schrödinger equation , 1993 .
[2] Dongyang Shi,et al. Anisotropic interpolation and quasi‐Wilson element for narrow quadrilateral meshes , 2004 .
[3] Andrew Y. Schoene. On the nonrelativistic limits of the Klein-Gordon and Dirac equations , 1979 .
[4] Dongyang Shi,et al. Anisotropic interpolations with application to nonconforming elements , 2004 .
[5] Charalambos Makridakis,et al. A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..
[6] K J Whiteman,et al. Linear and Nonlinear Waves , 1975 .
[7] Shi Dong-yang,et al. The Superconvergence Analysis of Linear Triangular Element on Anisotropic Meshes , 2007 .
[8] Kenji Nakanishi,et al. Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations , 2002 .
[9] V. I. Talanov,et al. Self Focusing of Wave Beams in Nonlinear Media , 1965 .
[10] Weizhu Bao,et al. Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..
[11] Charalambos Makridakis,et al. A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .
[12] G. Akrivis,et al. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .
[13] Yang Liu,et al. Error estimates of H1-Galerkin mixed finite element method for Schrödinger equation , 2009 .
[14] Jilu Wang,et al. A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..
[15] Zhong-Ci Shi,et al. A new superconvergence property of Wilson nonconforming finite element , 1997 .