Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrödinger equation

Abstract The main aim of this paper is to apply the simplest anisotropic linear triangular finite element to solve the nonlinear Schrodinger equation (NLS). Firstly, the error estimate and superclose property with order O ( h 2 ) about the Ritz projection are given based on an anisotropic interpolation property and high accuracy analysis of this element. Secondly, through establishing the relationship between the Ritz projection and interpolation, the superclose property of the interpolation is received. Thirdly, the global superconvergence with order O ( h 2 ) is derived by use of the interpolation post-processing technique. Finally, a numerical example is provided to verify the theoretical results. It is noteworthy that the main results obtained for anisotropic meshes herein cannot be deduced by only employing the interpolation or Ritz projection.

[1]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[2]  Dongyang Shi,et al.  Anisotropic interpolation and quasi‐Wilson element for narrow quadrilateral meshes , 2004 .

[3]  Andrew Y. Schoene On the nonrelativistic limits of the Klein-Gordon and Dirac equations , 1979 .

[4]  Dongyang Shi,et al.  Anisotropic interpolations with application to nonconforming elements , 2004 .

[5]  Charalambos Makridakis,et al.  A space-time finite element method for the nonlinear Schröinger equation: the discontinuous Galerkin method , 1998, Math. Comput..

[6]  K J Whiteman,et al.  Linear and Nonlinear Waves , 1975 .

[7]  Shi Dong-yang,et al.  The Superconvergence Analysis of Linear Triangular Element on Anisotropic Meshes , 2007 .

[8]  Kenji Nakanishi,et al.  Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations , 2002 .

[9]  V. I. Talanov,et al.  Self Focusing of Wave Beams in Nonlinear Media , 1965 .

[10]  Weizhu Bao,et al.  Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..

[11]  Charalambos Makridakis,et al.  A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method , 1999 .

[12]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[13]  Yang Liu,et al.  Error estimates of H1-Galerkin mixed finite element method for Schrödinger equation , 2009 .

[14]  Jilu Wang,et al.  A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation , 2014, J. Sci. Comput..

[15]  Zhong-Ci Shi,et al.  A new superconvergence property of Wilson nonconforming finite element , 1997 .