Physical bounds on small antennas as convex optimization problems

Convex optimization is used to determine the upper bound on G/Q for arbitrarily shaped antennas. The new formulation generalizes previous bounds and can include power dissipated in the antenna. The results are illustrated with a numerical example for planar rectangles.

[1]  M. Gustafsson,et al.  Illustrations of New Physical Bounds on Linearly Polarized Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[2]  Chi-Chih Chen,et al.  Small Antennas:Miniaturization Techniques & Applications , 2009 .

[3]  B. L. G. Jonsson,et al.  Physical Bounds and Optimal Currents on Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[4]  A. Yaghjian,et al.  Lower Bounds on the Q of Electrically Small Dipole Antennas , 2010, IEEE Transactions on Antennas and Propagation.

[5]  G. Vandenbosch,et al.  Reactive Energies, Impedance, and ${\rm Q}$ Factor of Radiating Structures , 2010, IEEE Transactions on Antennas and Propagation.

[6]  M. Gustafsson,et al.  Physical limitations on antennas of arbitrary shape , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[8]  Guy A E Vandenbosch Simple Procedure to Derive Lower Bounds for Radiation $Q$ of Electrically Small Devices of Arbitrary Topology , 2011, IEEE Transactions on Antennas and Propagation.

[9]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[10]  Mats Gustafsson,et al.  Absorption efficiency and physical bounds on antennas , 2010 .