NOTCH1 mediates a switch between two distinct secretomes during senescence

[1]  D. Baker,et al.  Cellular senescence in aging and age-related disease: from mechanisms to therapy , 2015, Nature Medicine.

[2]  Qikai Xu,et al.  The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4 , 2015, Science.

[3]  Dong Eun Kim,et al.  Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation , 2015, Nature Cell Biology.

[4]  A. Ferrando,et al.  CXCL12-Producing Vascular Endothelial Niches Control Acute T Cell Leukemia Maintenance. , 2015, Cancer cell.

[5]  Jonathan M. Cairns,et al.  Phenotype Specific Analyses Reveal Distinct Regulatory Mechanism for Chronically Activated p53 , 2015, PLoS genetics.

[6]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[7]  A. Bass,et al.  Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor suppressor activities , 2014, Oncogene.

[8]  C. Weston,et al.  A Flow Adhesion Assay to Study Leucocyte Recruitment to Human Hepatic Sinusoidal Endothelium Under Conditions of Shear Stress , 2014, Journal of visualized experiments : JoVE.

[9]  J. Sage,et al.  From fly wings to targeted cancer therapies: a centennial for notch signaling. , 2014, Cancer cell.

[10]  Melissa J. Landrum,et al.  RefSeq: an update on mammalian reference sequences , 2013, Nucleic Acids Res..

[11]  J. Sharpe,et al.  Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning , 2013, Cell.

[12]  A. Rodríguez-Baeza,et al.  Programmed Cell Senescence during Mammalian Embryonic Development , 2013, Cell.

[13]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[14]  Soyoung Lee,et al.  Synthetic lethal metabolic targeting of cellular senescence in cancer therapy , 2013, Nature.

[15]  P. A. Pérez-Mancera,et al.  Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence , 2013, Genes & development.

[16]  Octavio A. Quiñones,et al.  C/EBPγ Suppresses Senescence and Inflammatory Gene Expression by Heterodimerizing with C/EBPβ , 2013, Molecular and Cellular Biology.

[17]  Kelly J. Morris,et al.  A complex secretory program orchestrated by the inflammasome controls paracrine senescence , 2013, Nature Cell Biology.

[18]  Yahui Kong,et al.  Notch3 functions as a tumor suppressor by controlling cellular senescence. , 2013, Cancer research.

[19]  J. Kissil,et al.  Notch signaling in pancreatic cancer: oncogene or tumor suppressor? , 2013, Trends in molecular medicine.

[20]  S. Gygi,et al.  Latency-Associated Degradation of the MRP1 Drug Transporter During Latent Human Cytomegalovirus Infection , 2013, Science.

[21]  J. Campisi Aging, cellular senescence, and cancer. , 2013, Annual review of physiology.

[22]  J. Bartek,et al.  IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘Bystander senescence’ , 2012, Aging.

[23]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[24]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[25]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[26]  Melissa J. Morine,et al.  Next-generation sequencing identifies TGF-β1-associated gene expression profiles in renal epithelial cells reiterated in human diabetic nephropathy. , 2012, Biochimica et biophysica acta.

[27]  R. Hruban,et al.  Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer , 2012, Oncogene.

[28]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[29]  N. LeBrasseur,et al.  Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders , 2011, Nature.

[30]  Xiaowo Wang,et al.  Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. , 2011, Genes & development.

[31]  C. Weston,et al.  Common Lymphatic Endothelial and Vascular Endothelial Receptor-1 Mediates the Transmigration of Regulatory T Cells across Human Hepatic Sinusoidal Endothelium , 2011 .

[32]  T. Reh,et al.  Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear , 2010, Proceedings of the National Academy of Sciences.

[33]  D. Schaffer,et al.  Transforming Growth Factor‐β and Notch Signaling Mediate Stem Cell Differentiation into Smooth Muscle Cells , 2010, Stem cells.

[34]  R. Sen,et al.  Faculty Opinions recommendation of Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. , 2010 .

[35]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[36]  Howard Y. Chang,et al.  A TGFbeta-responsive gene signature is associated with a subset of diffuse scleroderma with increased disease severity. , 2010, The Journal of investigative dermatology.

[37]  A. Orth,et al.  Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency , 2010, Proceedings of the National Academy of Sciences.

[38]  Judith Campisi,et al.  Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network , 2009, Proceedings of the National Academy of Sciences.

[39]  Michael D. Wilson,et al.  ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. , 2009, Methods.

[40]  Raphael Kopan,et al.  The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism , 2009, Cell.

[41]  Simon Tavaré,et al.  Autophagy mediates the mitotic senescence transition. , 2009, Genes & development.

[42]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[43]  D. Peeper,et al.  Senescence-messaging secretome: SMS-ing cellular stress , 2009, Nature Reviews Cancer.

[44]  Jürgen Cox,et al.  A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics , 2009, Nature Protocols.

[45]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[46]  R. Rizzi,et al.  Notch1 regulates the fate of cardiac progenitor cells , 2008, Proceedings of the National Academy of Sciences.

[47]  G. Weinmaster,et al.  The many facets of Notch ligands , 2008, Oncogene.

[48]  S. Lowe,et al.  Senescence of Activated Stellate Cells Limits Liver Fibrosis , 2008, Cell.

[49]  D. Peeper,et al.  Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network , 2008, Cell.

[50]  Jonathan Melamed,et al.  Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence , 2008, Cell.

[51]  P. Kubes,et al.  Leukocyte adhesion in the liver: distinct adhesion paradigm from other organs. , 2008, Journal of hepatology.

[52]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[53]  S. Raguz,et al.  Ability to acquire drug resistance arises early during the tumorigenesis process. , 2007, Cancer research.

[54]  S. Lowe,et al.  A Novel Role for High-Mobility Group A Proteins in Cellular Senescence and Heterochromatin Formation , 2006, Cell.

[55]  D. DiMaio,et al.  Senescence‐associated β‐galactosidase is lysosomal β‐galactosidase , 2006 .

[56]  D. DiMaio,et al.  Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. , 2006, Aging cell.

[57]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[58]  M. Barbacid,et al.  Tumour biology: Senescence in premalignant tumours , 2005, Nature.

[59]  E. Petricoin,et al.  Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. , 2003, Cancer cell.

[60]  R. Hruban,et al.  Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. , 2003, Cancer cell.

[61]  K. Jones,et al.  Mastermind mediates chromatin-specific transcription and turnover of the Notch enhancer complex. , 2002, Genes & development.

[62]  D. Adams,et al.  Vascular adhesion protein-1 mediates adhesion and transmigration of lymphocytes on human hepatic endothelial cells. , 2001, Journal of immunology.

[63]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[64]  J. Campisi,et al.  Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  M. McMahon,et al.  Complementation of Defective Colony-Stimulating Factor 1 Receptor Signaling and Mitogenesis by Raf and v-Src , 1999, Molecular and Cellular Biology.

[66]  D. Wynford‐Thomas Cellular senescence and cancer , 1999, The Journal of pathology.

[67]  J. Lewis,et al.  Notch signalling and the control of cell fate choices in vertebrates. , 1998, Seminars in cell & developmental biology.

[68]  H. Sasamura,et al.  Interleukin (IL)-1 and IL-4 synergistically stimulate NF-IL6 activity and IL-6 production in human mesangial cells. , 1998, Kidney international.

[69]  S. Artavanis-Tsakonas,et al.  Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2 , 1997, Molecular and cellular biology.

[70]  J. Massagué,et al.  Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4 , 1997, Nature.