On spectral clustering of HSS preconditioner for generalized saddle-point matrices

Abstract For the nonsingular generalized saddle-point matrix of a Hermitian positive definite or semidefinite leading block, we rigorously analyze clustering property for the eigenvalues of the corresponding preconditioned matrix with respect to the Hermitian and skew-Hermitian splitting preconditioner. The result shows that these eigenvalues are clustered around 0 + , 2 − , and a few points located on the unit circle centered at 1, as the iteration parameter is close to 0.

[1]  Michele Benzi,et al.  Spectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[2]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[3]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[4]  Zhong-Zhi Bai Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks , 2013, J. Comput. Appl. Math..

[5]  M. Ng,et al.  Spectral Analysis for HSS Preconditioners , 2008 .

[6]  Michael K. Ng,et al.  New preconditioners for saddle point problems , 2006, Appl. Math. Comput..

[7]  Gene H. Golub,et al.  Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Zhong-Zhi Bai,et al.  Motivations and realizations of Krylov subspace methods for large sparse linear systems , 2015, J. Comput. Appl. Math..

[10]  Gene H. Golub,et al.  Matrix computations , 1983 .

[11]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[12]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[13]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[14]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[15]  G. Golub,et al.  Optimization of the Hermitian and Skew-Hermitian Splitting Iteration for Saddle-Point Problems , 2003 .

[16]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[17]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[18]  Z. Bai,et al.  On nonsingularity of block two-by-two matrices , 2013 .