Electrochemical oxidation of dopamine and ascorbic acid at a palladium electrode modified with in situ fabricated iodine-adlayer in alkaline solution.

[1]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[2]  U. Ungerstedt,et al.  In Vivo Measurement of Dopamine and Its Metabolites by Intracerebral Dialysis: Changes After d‐Amphetamine , 1983, Journal of neurochemistry.

[3]  Shigang Sun,et al.  Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions , 1986 .

[4]  R. S. Kelly,et al.  Effects of restricted diffusion at ultramicroelectrodes in brain tissue: The pool model: theory and experiment for chronoamperometry , 1986 .

[5]  I. Villegas,et al.  Anodic underpotential deposition and cathodic stripping of iodine at polycrystalline and single-crystal gold: studies by LEED, AES, XPS, and electrochemistry , 1991 .

[6]  L H Parsons,et al.  Extracellular Concentration and In Vivo Recovery of Dopamine in the Nucleus Accumbens Using Microdialysis , 1992, Journal of neurochemistry.

[7]  B. Ocko,et al.  Structure and electrocompression of electrodeposited iodine monolayers on gold (111) , 1994 .

[8]  R D O'Neill,et al.  Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo. A review. , 1994, The Analyst.

[9]  Satoru Tanaka,et al.  In-situ scanning tunneling microscopy of bromine adlayers on Pt(111) , 1995 .

[10]  G. Ertl,et al.  Bromine adsorption on Pt(111), (100), and (110) — an STM study in air and in electrolyte , 1995 .

[11]  G. Ertl,et al.  Effects of iodine coating and desorption on the reconstruction of a Pt(110) electrode: a scanning tunnelling microscopy study , 1995 .

[12]  B. Conway,et al.  Electrochemical oxide film formation at noble metals as a surface-chemical process , 1995 .

[13]  H. Baltruschat,et al.  On the structure of the Pt(100) and Pt(110) electrode surface in iodide solutions , 1995 .

[14]  M. Soriaga,et al.  ADSORBED-IODINE-CATALYZED DISSOLUTION OF PD SINGLE-CRYSTAL ELECTRODES : STUDIES BY ELECTROCHEMICAL SCANNING TUNNELING MICROSCOPY , 1996 .

[15]  I. Koshiishi,et al.  Measurement of ascorbate and dehydroascorbate contents in biological fluids. , 1997, Analytical chemistry.

[16]  A. Aldaz,et al.  Voltammetry, charge displacement experiments, and scanning tunneling microscopy of the Pt(100)-Br system , 1997 .

[17]  P. Ross,et al.  Adsorption of halide anions at the Pt(111)-solution interface studied by {bold {ital in situ}} surface x-ray scattering , 1997 .

[18]  G. Bijur,et al.  Antimutagenic and promutagenic activity of ascorbic acid during oxidative stress , 1997, Environmental and molecular mutagenesis.

[19]  Youn-Geun Kim,et al.  Selective and quantitative removal of Pd films from Pt substrates by adsorbed-iodine-catalyzed anodic stripping , 1998 .

[20]  Yuyuan Tian,et al.  In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine , 1999 .

[21]  Jia X Wang,et al.  Structure and inhibition effects of anion adlayers during the course of O2 reduction , 2000 .

[22]  T. Ohsaka,et al.  Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer , 2001 .

[23]  B. Ogorevc,et al.  Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. , 2001, Analytical chemistry.

[24]  Y. Nakato,et al.  Catalytic Effect of Adsorbed Iodine Atoms on Hydrogen Peroxide Reduction at Single-Crystal Pt Electrodes, Causing Enhanced Current Oscillations , 2001 .

[25]  T. Ohsaka,et al.  Electroanalytical applications of cationic self-assembled monolayers: square-wave voltammetric determination of dopamine and ascorbate. , 2001, Bioelectrochemistry.

[26]  A. Gewirth,et al.  Poisoning the catalytic reduction of peroxide on Pb underpotential deposition modified Au surfaces with iodine , 2002 .

[27]  R. Kalish,et al.  Dopamine and Ascorbate Analysis at Hydrodynamic Electrodes of Boron Doped Diamond and Nitrogen Incorporated Tetrahedral Amorphous Carbon , 2002 .

[28]  S. Khoo,et al.  Studies of sol-gel ceramic film incorporating methylene blue on glassy carbon: an electrocatalytic system for the simultaneous determination of ascorbic and uric acids. , 2002, Analytical chemistry.

[29]  R. Salvarezza,et al.  Building Complex Two− Dimensional Structures: Methylene Blue on Self-Assembled Monolayer−Covered Au(111) , 2002 .

[30]  Cheol-Min Yang,et al.  Adsorption properties of iodine-doped activated carbon fiber. , 2002, Journal of colloid and interface science.

[31]  O. Magnussen Ordered anion adlayers on metal electrode surfaces. , 2002, Chemical reviews.

[32]  T. Ohsaka,et al.  Enhancement of electrochemical reduction of hydrogen peroxide and observation of current oscillatory phenomena during its reduction on a mercury adatom-modified Au electrode , 2003 .

[33]  T. Ohsaka,et al.  Gold nanoparticle arrays for the voltammetric sensing of dopamine , 2003 .

[34]  Lei Zhang,et al.  Simultaneous determination of dopamine and ascorbic acid at an in-site functionalized self-assembled monolayer on gold electrode , 2004 .

[35]  J. Zen,et al.  Organic Redox Probes for the Key Oxidation States in Mixed Valence Ruthenium Oxide/Cyanometallate (Ruthenium Prussian Blue Analogue) Catalysts , 2004 .

[36]  N. Marković,et al.  Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: The pH effect , 2004 .

[37]  Akira Fujishima,et al.  Selective Detection of Dopamine and Its Metabolite, DOPAC, in the Presence of Ascorbic Acid Using Diamond Electrode Modified by the Polymer Film , 2004 .

[38]  Lei Zhang,et al.  Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine , 2005 .

[39]  Vinod K. Gupta,et al.  Voltammetric Determination of Uric Acid at a Fullerene‐C60‐Modified Glassy Carbon Electrode , 2005 .

[40]  Sahar Rashid-Nadimi,et al.  Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films , 2005 .

[41]  Lenys Fernández,et al.  Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant–clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid , 2005 .

[42]  S. Kumar,et al.  Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine , 2005 .

[43]  Andrzej Olszyna,et al.  Dopamine Oxidation at Per(6‐deoxy‐6‐thio)‐α‐Cyclodextrin Monolayer Modified Gold Electrodes , 2006 .

[44]  Itaru Honma,et al.  Biosensing Properties of TitanateNanotube Films: Selective Detection of Dopamine in the Presence of Ascorbate and Uric Acid , 2006 .

[45]  T. Ohsaka,et al.  Cathodic detection of H2O2 using iodide-modified gold electrode in alkaline media. , 2006, Analytical chemistry.

[46]  M. Bagherzadeh,et al.  Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as a nanosensor , 2006 .

[47]  H. Luo,et al.  Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. , 2006, Biosensors & bioelectronics.

[48]  Shen-Ming Chen,et al.  Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-ethylenedioxy)thiophene film modified electrodes , 2006 .

[49]  Shen-ming Chen,et al.  Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. , 2007, Talanta.

[50]  Shen-ming Chen,et al.  Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode. , 2007, Biosensors & bioelectronics.

[51]  Munetaka Oyama,et al.  Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: Application in pharmaceutical formulations and biological fluids. , 2007, Talanta.

[52]  Chunjuan Tang,et al.  Electroanalytical determination of acetaminophen using nano-TiO(2)/polymer coated electrode in the presence of dopamine. , 2008, Talanta.

[53]  T. Ohsaka,et al.  In situ fabricated iodine-adlayer assisted selective electrooxidation of uric acid in alkaline media , 2008 .

[54]  Yoshitaka Gushikem,et al.  Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid by methylene blue adsorbed on a phosphorylated zirconia-silica composite electrode , 2008 .

[55]  A. Fujishima,et al.  Enhanced electrochemical response in oxidative differential pulse voltammetry of dopamine in the presence of ascorbic acid at carboxyl-terminated boron-doped diamond electrodes , 2009 .