Application of genetic algorithm to the observer‐based controller design for neutral systems

Abstract In this paper, the dynamic observer‐based controller design for a class of neutral systems with known and uncertain time delays is considered. Delay‐dependent and delay‐independent stabilizability criteria are proposed to guarantee the stability for the feedback control systems. Linear matrix inequality (LMI) and genetic algorithm (GA) are used to design the observer‐based control. Design procedure for the observer‐based control is provided. A numerical example is given to illustrate our results.

[1]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[2]  Mohamed Darouach,et al.  Linear functional observers for systems with delays in state variables , 2001, IEEE Trans. Autom. Control..

[3]  Pierre-Alexandre Bliman,et al.  Lyapunov equation for the stability of linear delay systems of retarded and neutral type , 2002, IEEE Trans. Autom. Control..

[4]  C. Lien,et al.  Discrete-Delay-Independent and Discrete-Delay-Dependent Criteria for a Class of Neutral Systems , 2003 .

[5]  Graziano Chesi,et al.  Solving quadratic distance problems: an LMI-based approach , 2003, IEEE Trans. Autom. Control..

[6]  Ju H. Park,et al.  Robust guaranteed cost control for uncertain linear differential systems of neutral type , 2003, Appl. Math. Comput..

[7]  H. Trinh Linear functional state observer for time-delay systems , 1999 .

[8]  Pavel Zítek,et al.  Anisochronic state observers for hereditary systems , 1998 .

[9]  Chien-Yu Lu,et al.  An LMI-based approach for robust stabilization of uncertain stochastic systems with time-varying delays , 2003, IEEE Trans. Autom. Control..

[10]  Hieu Trinh,et al.  Comments on "An Asymptotic Modal Observer For Linear Autonomous Time Lag Systems , 1997, IEEE Trans. Autom. Control..

[11]  Yeong-Jeu Sun,et al.  Global stabilizability of uncertain systems with time-varying delays via dynamic observer-based output feedback , 2002 .

[12]  Ron J. Patton,et al.  An observer design for linear time-delay systems , 2002, IEEE Trans. Autom. Control..

[13]  James Lam,et al.  Stability analysis and observer design for neutral delay systems , 2002, IEEE Trans. Autom. Control..

[14]  Changchun Hua,et al.  Robust stabilization of uncertain dynamic time-delay systems with unknown bounds of uncertainties , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[15]  Chun-Hsiung Fang,et al.  Stabilization of Uncertain Linear Systems via Static Output Feedback Control , 2004 .

[16]  Lihua Xie,et al.  Stabilization of a class of uncertain large-scale stochastic systems with time delays , 2000, Autom..

[17]  Raymond A. DeCarlo,et al.  Robust controller and observer design for time-delay systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[18]  Shengyuan Xu,et al.  An LMI approach to guaranteed cost control for uncertain linear neutral delay systems , 2003 .

[19]  Jesus Leyva-Ramos,et al.  An asymptotic modal observer for linear autonomous time lag systems , 1995, IEEE Trans. Autom. Control..

[20]  Jyh-Horng Chou,et al.  Application of the Taguchi-genetic method to design an optimal grey-fuzzy controller of a constant turning force system , 2000 .

[21]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.