Kernel bounds for disjoint cycles and disjoint paths
暂无分享,去创建一个
[1] Hans L. Bodlaender,et al. A Cubic Kernel for Feedback Vertex Set , 2007, STACS.
[2] Henning Fernau,et al. Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves , 2009, STACS.
[3] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[4] Richard B. Tan,et al. A Linear Kernel for the k-Disjoint Cycle Problem on Planar Graphs , 2008, ISAAC.
[5] Michael R. Fellows,et al. Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..
[6] Hans L. Bodlaender,et al. Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.
[7] Dieter van Melkebeek,et al. Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.
[8] Hans L. Bodlaender,et al. A Linear Kernel for Planar Feedback Vertex Set , 2008, IWPEC.
[9] Lance Fortnow,et al. Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..
[10] Eyal Amir,et al. Approximation Algorithms for Treewidth , 2010, Algorithmica.
[11] Michael R. Fellows,et al. On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..
[12] Saket Saurabh,et al. Incompressibility through Colors and IDs , 2009, ICALP.
[13] Noga Alon,et al. The Moore Bound for Irregular Graphs , 2002, Graphs Comb..
[14] Eyal Amir,et al. Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.
[15] Yijia Chen,et al. Lower Bounds for Kernelizations and Other Preprocessing Procedures , 2010, Theory of Computing Systems.
[16] Michael R. Fellows,et al. On Problems without Polynomial Kernels (Extended Abstract) , 2008, ICALP.
[17] Peter Shaw,et al. Packing Edge Disjoint Triangles: A Parameterized View , 2004, IWPEC.
[18] B. Mohar,et al. Graph Minors , 2009 .
[19] Stefan Kratsch,et al. Two edge modification problems without polynomial kernels , 2009, Discret. Optim..
[20] H. Bodlaender,et al. Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .
[21] V. Rich. Personal communication , 1989, Nature.
[22] Stéphan Thomassé,et al. A 4k2 kernel for feedback vertex set , 2010, TALG.
[23] Liming Cai,et al. Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..
[24] Stéphan Thomassé. A quadratic kernel for feedback vertex set , 2009, SODA.
[25] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[26] Richard M. Karp,et al. On the Computational Complexity of Combinatorial Problems , 1975, Networks.
[27] Hans L. Bodlaender,et al. A Cubic Kernel for Feedback Vertex Set and Loop Cutset , 2010, Theory of Computing Systems.
[28] Michael R. Fellows,et al. FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .
[29] Ton Kloks,et al. New Algorithms for k-Face Cover, k-Feedback Vertex Set, and k -Disjoint Cycles on Plane and Planar Graphs , 2002, WG.
[30] Stefan Kratsch,et al. Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.
[31] Dieter Kratsch,et al. On treewidth approximations , 2004, Discret. Appl. Math..
[32] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[33] Rolf Niedermeier,et al. Invitation to data reduction and problem kernelization , 2007, SIGA.
[34] Michael R. Fellows,et al. The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.