Kernel bounds for disjoint cycles and disjoint paths

In this paper, we show that the problems Disjoint Cycles and Disjoint Paths do not have polynomial kernels, unless NP@?coNP/poly. Thus, these problems do not allow polynomial time preprocessing that results in instances whose size is bounded by a polynomial in the parameter at hand. We build upon recent results by Bodlaender et al. [6] and Fortnow and Santhanam [20], that show that NP-complete problems that are 'or-compositional' do not have polynomial kernels, unless NP@?coNP/poly. To this machinery, we add a notion of transformation, and obtain that Disjoint Cycles, and Disjoint Paths do not have polynomial kernels, unless NP@?coNP/poly. For the proof, we introduce a problem on strings, called Disjoint Factors, and first show that this problem has no polynomial kernel unless NP@?coNP/poly. We also show that the related Disjoint Cycles Packing problem has a kernel of size O(klogk).

[1]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set , 2007, STACS.

[2]  Henning Fernau,et al.  Kernel(s) for Problems with No Kernel: On Out-Trees with Many Leaves , 2009, STACS.

[3]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[4]  Richard B. Tan,et al.  A Linear Kernel for the k-Disjoint Cycle Problem on Planar Graphs , 2008, ISAAC.

[5]  Michael R. Fellows,et al.  Fixed-Parameter Tractability and Completeness II: On Completeness for W[1] , 1995, Theor. Comput. Sci..

[6]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[7]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[8]  Hans L. Bodlaender,et al.  A Linear Kernel for Planar Feedback Vertex Set , 2008, IWPEC.

[9]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[10]  Eyal Amir,et al.  Approximation Algorithms for Treewidth , 2010, Algorithmica.

[11]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[12]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[13]  Noga Alon,et al.  The Moore Bound for Irregular Graphs , 2002, Graphs Comb..

[14]  Eyal Amir,et al.  Efficient Approximation for Triangulation of Minimum Treewidth , 2001, UAI.

[15]  Yijia Chen,et al.  Lower Bounds for Kernelizations and Other Preprocessing Procedures , 2010, Theory of Computing Systems.

[16]  Michael R. Fellows,et al.  On Problems without Polynomial Kernels (Extended Abstract) , 2008, ICALP.

[17]  Peter Shaw,et al.  Packing Edge Disjoint Triangles: A Parameterized View , 2004, IWPEC.

[18]  B. Mohar,et al.  Graph Minors , 2009 .

[19]  Stefan Kratsch,et al.  Two edge modification problems without polynomial kernels , 2009, Discret. Optim..

[20]  H. Bodlaender,et al.  Analysis of Data Reduction: Transformations give evidence for non-existence of polynomial kernels , 2008 .

[21]  V. Rich Personal communication , 1989, Nature.

[22]  Stéphan Thomassé,et al.  A 4k2 kernel for feedback vertex set , 2010, TALG.

[23]  Liming Cai,et al.  Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..

[24]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[25]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[26]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[27]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set and Loop Cutset , 2010, Theory of Computing Systems.

[28]  Michael R. Fellows,et al.  FIXED-PARAMETER TRACTABILITY AND COMPLETENESS , 2022 .

[29]  Ton Kloks,et al.  New Algorithms for k-Face Cover, k-Feedback Vertex Set, and k -Disjoint Cycles on Plane and Planar Graphs , 2002, WG.

[30]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[31]  Dieter Kratsch,et al.  On treewidth approximations , 2004, Discret. Appl. Math..

[32]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[33]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[34]  Michael R. Fellows,et al.  The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel , 2006, IWPEC.