Approximating the LLR Distribution for a Class of Soft-Output MIMO Detectors

We present approximations of the LLR distribution for a class of fixed-complexity soft-output MIMO detectors, such as the optimal soft detector and the soft-output via partial marginalization detector. More specifically, in a MIMO AWGN setting, we approximate the LLR distribution conditioned on the transmitted signal and the channel matrix with a Gaussian mixture model (GMM). Our main results consist of an analytical expression of the GMM model (including the number of modes and their corresponding parameters) and a proof that, in the limit of high SNR, this LLR distribution converges in probability towards a unique Gaussian distribution.

[1]  Erik G. Larsson,et al.  Fixed-Complexity Soft MIMO Detection via Partial Marginalization , 2008, IEEE Transactions on Signal Processing.

[2]  Lutz H.-J. Lampe,et al.  Bit-Interleaved Coded Modulation with Mismatched Decoding Metrics , 2011, IEEE Transactions on Communications.

[3]  D. Owen Tables for Computing Bivariate Normal Probabilities , 1956 .

[4]  A. C. Aitken,et al.  Note on Selection from a Multivariate Normal Population , 1935 .

[5]  G. P. Steck A Table for Computing Trivariate Normal Probabilities , 1958 .

[6]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[7]  Tamás Szántai,et al.  Computing Multivariate Normal Probabilities: A New Look , 2002 .

[8]  Lisa A. Weissfeld,et al.  Approximation of certain multivariate integrals , 1991 .

[9]  Joseph Jean Boutros,et al.  Accurate Approximation of QAM Error Probability on Quasi-Static MIMO Channels and Its Application to Adaptive Modulation , 2007, IEEE Transactions on Information Theory.

[10]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[11]  Giuseppe Caire,et al.  Error probability analysis of bit-interleaved coded modulation , 2006, IEEE Transactions on Information Theory.

[12]  Kyungwhoon Cheun,et al.  Improving the performance of SM-MIMO/BICM-ID systems with LLR distribution matching , 2009, IEEE Transactions on Communications.

[13]  Inbar Fijalkow,et al.  A Proof of Convergence of the MAP Turbo-Detector to the AWGN Case , 2008, IEEE Transactions on Signal Processing.

[14]  Leszek Szczecinski,et al.  Distribution of max-log metrics for QAM-based BICM in fading channels , 2009, IEEE Transactions on Communications.

[15]  Erik G. Larsson,et al.  Gaussian approximation of the LLR distribution for the ML and partial marginalization MIMO detectors , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Giuseppe Caire,et al.  The throughput of hybrid-ARQ protocols for the Gaussian collision channel , 2001, IEEE Trans. Inf. Theory.

[17]  John S. Thompson,et al.  Extending a Fixed-Complexity Sphere Decoder to Obtain Likelihood Information for Turbo-MIMO Systems , 2008, IEEE Transactions on Vehicular Technology.

[18]  Leszek Szczecinski,et al.  Probability Density Function of Reliability Metrics in BICM with Arbitrary Modulation: Closed-form through Algorithmic Approach , 2008, IEEE Transactions on Communications.

[19]  Erik G. Larsson,et al.  Partial Marginalization Soft MIMO Detection With Higher Order Constellations , 2011, IEEE Transactions on Signal Processing.

[20]  Erik G. Larsson,et al.  Allocation of Computational Resources for Soft MIMO Detection , 2011, IEEE Journal of Selected Topics in Signal Processing.

[21]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[22]  Leszek Szczecinski,et al.  Correcting Suboptimal Metrics in Iterative Decoders , 2009, 2009 IEEE International Conference on Communications.

[23]  R C Elston,et al.  Multifactorial qualitative traits: genetic analysis and prediction of recurrence risks. , 1974, Biometrics.

[24]  John S. Thompson,et al.  Fixing the Complexity of the Sphere Decoder for MIMO Detection , 2008, IEEE Transactions on Wireless Communications.

[25]  L. Comtet,et al.  Advanced Combinatorics: The Art of Finite and Infinite Expansions , 1974 .

[26]  Gerald Matz,et al.  Performance Assessment of MIMO-BICM Demodulators Based on Mutual Information , 2012, IEEE Transactions on Signal Processing.

[27]  G. M. Tallis Plane Truncation in Normal Populations , 1965 .

[28]  Leszek Szczecinski,et al.  Performance Evaluation of Linear Turbo Receivers Using Analytical Extrinsic Information Transfer Functions , 2005, EURASIP J. Adv. Signal Process..

[29]  H. Joe Approximations to Multivariate Normal Rectangle Probabilities Based on Conditional Expectations , 1995 .

[30]  John P. Rice,et al.  An Approximation to the Multivariate Normal Integral: Its Application to Multifactorial Qualitative Traits , 1979 .

[31]  Leszek Szczecinski,et al.  Distribution of L-values in gray-mapped M2-QAM: closed-form approximations and applications , 2009, IEEE Transactions on Communications.

[32]  G. M. Tallis The Moment Generating Function of the Truncated Multi‐Normal Distribution , 1961 .

[33]  Lutz H.-J. Lampe,et al.  An analytical approach for performance evaluation of BICM transmission over Nakagami-m fading channels , 2010, IEEE Transactions on Communications.