Solutions to right coprime factorizations and generalized Sylvester matrix equations
暂无分享,去创建一个
[1] S. Nash,et al. Approaches to robust pole assignment , 1989 .
[2] Guang-Ren Duan,et al. Eigenstructure assignment by decentralized output feedback-a complete parametric approach , 1994, IEEE Trans. Autom. Control..
[3] Chia-Chi Tsui,et al. A complete analytical solution to the equation TA - FT = LC and its applications , 1987 .
[4] Myung-Joong Youn,et al. Eigenvalue-generalized eigenvector assignment by output feedback , 1987 .
[5] S. Bingulac,et al. On the equivalence between MFD models and pseudo-observable forms of MIMO systems , 1998 .
[6] K. Ohishi,et al. High performance ultra-low speed servo system based on doubly coprime factorization and instantaneous speed observer , 1996 .
[7] Michael Green,et al. H8 controller synthesis by J-lossless coprime factorization , 1992 .
[8] G. R. Duan. Parametric eigenstructure assignment via output feedback based on singular value decompositions , 2003 .
[9] B. Datta. Partial Eigenvalue Assignment in Linear Systems : Existence , Uniqueness and Numerical Solution , 2002 .
[10] G. Duan,et al. An explicit solution to the matrix equation AX − XF = BY , 2005 .
[11] R. Patton,et al. Robust fault detection using Luenberger-type unknown input observers-a parametric approach , 2001 .
[12] Mihail M. Konstantinov,et al. Synthesis of linear systems with desired equivalent form , 1980 .
[13] Guang-Ren Duan,et al. On the solution to the Sylvester matrix equation AV+BW=EVF , 1996, IEEE Trans. Autom. Control..
[14] J. O'Reilly,et al. Eigenstructure assignment in linear multivariable systems - A parametric solution , 1982, CDC 1982.
[15] E. Armstrong. Coprime factorization approach to robust stabilization of control structures interaction evolutionary model , 1994 .
[16] Stanoje Bingulac,et al. On coprime factorization and minimal realization of transfer function matrices using the pseudo-observability concept , 1994 .
[17] J. Jones,et al. Solutions of the Lyapunov matrix equation BX - XA = C , 1982 .
[18] N. Loh,et al. Design of observers for two-dimensional systems , 1985, 1985 24th IEEE Conference on Decision and Control.
[19] B. Porter,et al. Design of linear multivariable continuous-time tracking systems incorporating feedforward and feedback controllers , 1975 .
[20] P. Caines. Minimal realization of transfer function matrices , 1971 .
[21] R. V. Patel,et al. Computation of matrix fraction descriptions of linear time-invariant systems , 1981 .
[22] Guo-Ping Liu,et al. Eigenstructure assignment design for proportional-integral observers: continuous-time case , 2001 .
[23] G. R. DUAN,et al. Solution to matrix equation AV + BW = EVF and eigenstructure assignment for descriptor systems , 1992, Autom..
[24] N. Nichols,et al. Robust pole assignment in linear state feedback , 1985 .
[25] Guang-Ren Duan,et al. Robust fault detection in descriptor linear systems via generalized unknown input observers , 2002, Int. J. Syst. Sci..
[26] H/sub infinity / controller synthesis by J-lossless coprime factorization , 1990, 29th IEEE Conference on Decision and Control.
[27] Jie Chen,et al. Design of unknown input observers and robust fault detection filters , 1996 .
[28] Guang-Ren Duan,et al. Robust eigenstructure assignment via dynamical compensators, , 1993, Autom..
[29] S. Bingulac,et al. On admissibility of pseudoobservability and pseudocontrollability indexes , 1987 .
[30] Andras Varga,et al. Robust pole assignment via Sylvester equation based state feedback parametrization , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).
[31] Ali Saberi,et al. Control of Linear Systems with Regulation and Input Constraints , 2000 .
[32] G.-R. Duan. Right coprime factorisations using system upper Hessenberg forms - the multi-input system case , 2001 .
[33] Shankar P. Bhattacharyya,et al. Robust and well‐conditioned eigenstructure assignment via sylvester's equation , 1983 .
[34] G. Rizzoni,et al. An eigenstructure assignment algorithm for the design of fault detection filters , 1994, IEEE Trans. Autom. Control..
[35] Guang-Ren Duan,et al. Eigenstructure assignment and response analysis in descriptor linear systems with state feedback control , 1998 .
[36] Antony Jameson,et al. SOLUTION OF EQUATION AX + XB = C BY INVERSION OF AN M × M OR N × N MATRIX ∗ , 1968 .
[37] R. J. Patton,et al. Robust fault detection in linear systems using Luenberger observers , 1998 .
[38] W. Q. Liu,et al. Robust Model Reference Control for Multivariable Linear Systems: A Parametric Approach , 2000 .
[39] Chia-Chi Tsui,et al. New approach to robust observer design , 1988 .
[40] T. Beelen,et al. Numerical computation of a coprime factorization of a transfer function matrix , 1987 .
[41] Paul Van Dooren. Reduced order observers: A new algorithm and proof , 1984 .
[42] S. Bhattacharyya,et al. Pole assignment via Sylvester's equation , 1982 .
[43] Guo-Ping Liu,et al. Robust pole assignment in descriptor linear systems via state feedback , 2001, ECC.
[44] G. Duan,et al. Simple algorithm for robust pole assignment in linear output feedback , 1991 .
[45] Chia-Chi Tsui. What is the minimum function observer order , 1998, 2003 European Control Conference (ECC).
[46] Basil G. Mertzios. Pole assignment of two-dimensional systems for separable characteristic equations , 1984 .
[47] G. Duan. Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems , 1993, IEEE Trans. Autom. Control..
[48] João Carlos Basilio,et al. An algorithm for coprime matrix fraction description using sylvester matrices , 1997 .
[49] Antony Jameson,et al. Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .
[50] D. Luenberger. Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.
[51] Thomas Kailath,et al. Linear Systems , 1980 .