Solutions to right coprime factorizations and generalized Sylvester matrix equations

In this paper, an explicit solution to right coprime factorization of transfer function based on Krylov matrix and Pseudo-Controllability Indices is investigated. The proposed approach only needs to solve a series of linear equations. Based on these solutions to right coprime factorization, a complete, analytical, and explicit solution to the generalized Sylvester matrix equation AV - VF = BW with F being an arbitrary known matrix with arbitrary eigenvalues, is proposed. The primary feature of this solution is that the matrix F does not need to be transformed into any canonical form. The results provide great convenience to the computation and analysis of the solution to this class of equations, and can perform important functions in many analysis and design problems in control systems theory.

[1]  S. Nash,et al.  Approaches to robust pole assignment , 1989 .

[2]  Guang-Ren Duan,et al.  Eigenstructure assignment by decentralized output feedback-a complete parametric approach , 1994, IEEE Trans. Autom. Control..

[3]  Chia-Chi Tsui,et al.  A complete analytical solution to the equation TA - FT = LC and its applications , 1987 .

[4]  Myung-Joong Youn,et al.  Eigenvalue-generalized eigenvector assignment by output feedback , 1987 .

[5]  S. Bingulac,et al.  On the equivalence between MFD models and pseudo-observable forms of MIMO systems , 1998 .

[6]  K. Ohishi,et al.  High performance ultra-low speed servo system based on doubly coprime factorization and instantaneous speed observer , 1996 .

[7]  Michael Green,et al.  H8 controller synthesis by J-lossless coprime factorization , 1992 .

[8]  G. R. Duan Parametric eigenstructure assignment via output feedback based on singular value decompositions , 2003 .

[9]  B. Datta Partial Eigenvalue Assignment in Linear Systems : Existence , Uniqueness and Numerical Solution , 2002 .

[10]  G. Duan,et al.  An explicit solution to the matrix equation AX − XF = BY , 2005 .

[11]  R. Patton,et al.  Robust fault detection using Luenberger-type unknown input observers-a parametric approach , 2001 .

[12]  Mihail M. Konstantinov,et al.  Synthesis of linear systems with desired equivalent form , 1980 .

[13]  Guang-Ren Duan,et al.  On the solution to the Sylvester matrix equation AV+BW=EVF , 1996, IEEE Trans. Autom. Control..

[14]  J. O'Reilly,et al.  Eigenstructure assignment in linear multivariable systems - A parametric solution , 1982, CDC 1982.

[15]  E. Armstrong Coprime factorization approach to robust stabilization of control structures interaction evolutionary model , 1994 .

[16]  Stanoje Bingulac,et al.  On coprime factorization and minimal realization of transfer function matrices using the pseudo-observability concept , 1994 .

[17]  J. Jones,et al.  Solutions of the Lyapunov matrix equation BX - XA = C , 1982 .

[18]  N. Loh,et al.  Design of observers for two-dimensional systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[19]  B. Porter,et al.  Design of linear multivariable continuous-time tracking systems incorporating feedforward and feedback controllers , 1975 .

[20]  P. Caines Minimal realization of transfer function matrices , 1971 .

[21]  R. V. Patel,et al.  Computation of matrix fraction descriptions of linear time-invariant systems , 1981 .

[22]  Guo-Ping Liu,et al.  Eigenstructure assignment design for proportional-integral observers: continuous-time case , 2001 .

[23]  G. R. DUAN,et al.  Solution to matrix equation AV + BW = EVF and eigenstructure assignment for descriptor systems , 1992, Autom..

[24]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[25]  Guang-Ren Duan,et al.  Robust fault detection in descriptor linear systems via generalized unknown input observers , 2002, Int. J. Syst. Sci..

[26]  H/sub infinity / controller synthesis by J-lossless coprime factorization , 1990, 29th IEEE Conference on Decision and Control.

[27]  Jie Chen,et al.  Design of unknown input observers and robust fault detection filters , 1996 .

[28]  Guang-Ren Duan,et al.  Robust eigenstructure assignment via dynamical compensators, , 1993, Autom..

[29]  S. Bingulac,et al.  On admissibility of pseudoobservability and pseudocontrollability indexes , 1987 .

[30]  Andras Varga,et al.  Robust pole assignment via Sylvester equation based state feedback parametrization , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[31]  Ali Saberi,et al.  Control of Linear Systems with Regulation and Input Constraints , 2000 .

[32]  G.-R. Duan Right coprime factorisations using system upper Hessenberg forms - the multi-input system case , 2001 .

[33]  Shankar P. Bhattacharyya,et al.  Robust and well‐conditioned eigenstructure assignment via sylvester's equation , 1983 .

[34]  G. Rizzoni,et al.  An eigenstructure assignment algorithm for the design of fault detection filters , 1994, IEEE Trans. Autom. Control..

[35]  Guang-Ren Duan,et al.  Eigenstructure assignment and response analysis in descriptor linear systems with state feedback control , 1998 .

[36]  Antony Jameson,et al.  SOLUTION OF EQUATION AX + XB = C BY INVERSION OF AN M × M OR N × N MATRIX ∗ , 1968 .

[37]  R. J. Patton,et al.  Robust fault detection in linear systems using Luenberger observers , 1998 .

[38]  W. Q. Liu,et al.  Robust Model Reference Control for Multivariable Linear Systems: A Parametric Approach , 2000 .

[39]  Chia-Chi Tsui,et al.  New approach to robust observer design , 1988 .

[40]  T. Beelen,et al.  Numerical computation of a coprime factorization of a transfer function matrix , 1987 .

[41]  Paul Van Dooren Reduced order observers: A new algorithm and proof , 1984 .

[42]  S. Bhattacharyya,et al.  Pole assignment via Sylvester's equation , 1982 .

[43]  Guo-Ping Liu,et al.  Robust pole assignment in descriptor linear systems via state feedback , 2001, ECC.

[44]  G. Duan,et al.  Simple algorithm for robust pole assignment in linear output feedback , 1991 .

[45]  Chia-Chi Tsui What is the minimum function observer order , 1998, 2003 European Control Conference (ECC).

[46]  Basil G. Mertzios Pole assignment of two-dimensional systems for separable characteristic equations , 1984 .

[47]  G. Duan Solutions of the equation AV+BW=VF and their application to eigenstructure assignment in linear systems , 1993, IEEE Trans. Autom. Control..

[48]  João Carlos Basilio,et al.  An algorithm for coprime matrix fraction description using sylvester matrices , 1997 .

[49]  Antony Jameson,et al.  Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .

[50]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[51]  Thomas Kailath,et al.  Linear Systems , 1980 .