Computing the Solution Operators of Symmetric Hyperbolic Systems of PDE

We study the computability properties of symmetric hyperbolic systems of PDE A ∂u ∂t + m � i=1 B i ∂u ∂xi =0 ,A = A ∗ > 0, Bi = B ∗ i , with the initial condition u|t=0 = ϕ(x1 ,...,x m). Such systems first considered by K.O. Friedrichs can be used to describe a wide variety of physical processes. Using the difference equations approach, we prove computability of the operator that sends (for any fixed computable matri- ces A, B1 ,...,B m satisfying certain conditions) any initial function ϕ ∈ C p+1 (Q, R n ) (satisfying certain conditions), p ≥ 2, to the unique solution u ∈ C p (H, R n ), where Q =( 0, 1) m and H is the nonempty domain of correctness of the system.

[1]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  H. Woxniakowski Information-Based Complexity , 1988 .

[4]  Marian Boykan Pour-El,et al.  Computability in analysis and physics , 1989, Perspectives in Mathematical Logic.

[5]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[6]  A. Kulikovskii,et al.  Mathematical Aspects of Numerical Solution of Hyperbolic Systems , 1998, physics/9807053.

[7]  Klaus Weihrauch,et al.  Is wave propagation computable or can wave computers beat the turing machine? , 2002 .

[8]  Klaus Weihrauch,et al.  Computing the solution of the Korteweg-de Vries equation with arbitrary precision on Turing , 2005, Theor. Comput. Sci..

[9]  溝畑 茂,et al.  The theory of partial differential equations , 1973 .

[10]  V. Zhurin,et al.  Introduction to the theory of difference schemes: A. A. Samarskii, 552p. Nauka, Editor-in-chief of physical-mathematical literature, Moscow, 1971☆ , 1973 .

[11]  S. Godunov,et al.  Elements of Continuum Mechanics and Conservation Laws , 2003, Springer US.

[12]  R. O. Gandy,et al.  COMPUTABILITY IN ANALYSIS AND PHYSICS (Perspectives in Mathematical Logic) , 1991 .

[13]  K. Friedrichs Symmetric hyperbolic linear differential equations , 1954 .

[14]  Invariant recording of elasticity theory equations , 2008 .

[15]  Victor L. Selivanov,et al.  Computing Solutions of Symmetric Hyperbolic Systems of PDE's , 2008, CCA.

[16]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[17]  Ker-I Ko,et al.  Complexity Theory of Real Functions , 1991, Progress in Theoretical Computer Science.

[18]  W. H. Reid,et al.  The Theory of Elasticity , 1960 .

[19]  Vasilii S Vladimirov Equations of mathematical physics , 1971 .

[20]  Martin Ziegler,et al.  A Computable Spectral Theorem , 2000, CCA.

[21]  J. Schauder Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen , 1935 .

[22]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[23]  Ye.G. D'yakonov,et al.  Introduction to the theory of difference schemes , 1964 .

[24]  Vasco Brattka,et al.  Computability over Topological Structures , 2003 .

[25]  S. Godunov Modern Aspects of Linear Algebra , 1998 .