Unbinned deep learning jet substructure measurement in high Q2 ep collisions at HERA

The radiation pattern within high energy quark- and gluon-initiated jets (jet substructure) is used extensively as a precision probe of the strong force as well as an environment for optimizing event generators with numerous applications in high energy particle and nuclear physics. Looking at electron-proton collisions is of particular interest as many of the complications present at hadron colliders are absent. A detailed study of modern jet substructure observables, jet angularities, in electron-proton collisions is presented using data recorded using the H1 detector at HERA. The measurement is unbinned and multi-dimensional, using machine learning to correct for detector effects. All of the available reconstructed object information of the respective jets is interpreted by a graph neural network, achieving superior precision on a selected set of jet angularities. Training these networks was enabled by the use of a large number of GPUs in the Perlmutter supercomputer at Berkeley Lab. The particle jets are reconstructed in the laboratory frame, using the $k_{\mathrm{T}}$ jet clustering algorithm. Results are reported at high transverse momentum transfer $Q^2>150$ GeV${}^2$, and inelasticity $0.2<y<0.7$. The analysis is also performed in sub-regions of $Q^2$, thus probing scale dependencies of the substructure variables. The data are compared with a variety of predictions and point towards possible improvements of such models.

Armenia | Shandong | Heidelberg | Cea | J. G. Contreras | Orsay | Palaiseau | France | Berkeley | Geneva | Munchen | Faculty of Mathematics | Astronomy | Paul Scherrer Institut | Moscow | Riverside | Marseille | Didcot | Oxfordshire | Llr | Gif-sur-Yvette. | Hamburg | Irfu | Praha | Universit'e de Savoie | Roma | Villigen | Liverpool | Aachen | Zurich | Podgorica | Upton | Lancaster | Academy of Sciences of the Czech Republic | Lapp | Brussels | Physics | Dubna | Skobeltsyn Institute of Nuclear Physics | Yerevan Physics Institute | Olomouc | Zeuthen | Dortmund | Gottingen | Antwerp | USA. | Houston | London | Birmingham | Lomonosov Moscow State University | H Germany | C. Saclay | IrfuSPP | CNRSIN2p3 | CA 94720 | U. California | M. F. Physik | S. O. Physics | U. Michigan | A. Arbor | B. N. Laboratory | NY 11973 | Czech Republic | R. Horisberger | J. Katzy | Russia. | Tu Dortmund | S. B. University | G. Brandt | T. Greenshaw | J. Kretzschmar | P. Laycock | S. Maxfield | R. Polifka | V. Radescu | E. Rizvi | M. Rotaru | E. Sauvan | S. Schmitt | L. Schoeffel | T. Sykora | P. Thompson | P. Newman | U. Birmingham | Eth | Poland | Queen Mary | K. Černý | D. Hoffmann | S. Shushkevich | D. South | P. Mechelen | T. Hreus | Z. Zhang | M. Gouzevitch | A. Meyer | G. Eckerlin | C. Kleinwort | A. Petrukhin | D. Pitzl | Z. Chen | C. Grab | P. Robmann | M. Arratia | M. Landon | D. Sankey | B. Nachman | C. Kiesling | B. List | C. Niebuhr | M. Fleischer | E. Elsen | J. Cvach | J. Olsson | V. Boudry | F. Sefkow | United Kingdom. | R. University | W. Lafayette | V. Chekelian | S. Levonian | V. Mikuni | A. Baty | R. Kogler | N. Raicevic | K. Lipka | L. Favart | Romania. | Antwerp. | Italy | M'exico. | Z. Tu | D. Britzger | A. Bolz | C. Diaconu | R. Henderson | S. Mikocki | A. Fomenko | A. Campbell | A. Jung | J. Feltesse | A. Baghdasaryan | K. Begzsuren | L. Bystritskaya | J. Contreras | K. Daum | S. Egli | A. Fedotov | J. Gayler | L. Goerlich | N. Gogitidze | G. Grindhammer | D. Haidt | M. Jacquet | M. Kapichine | P. Kostka | E. Malinovski | H. Martyn | A. Morozov | D. Ozerov | C. Pascaud | I. Pićurić | T. Ravdandorj | P. Reimer | R. Roosen | A. Rostovtsev | M. Sauter | Y. Soloviev | P. Sopicki | V. Spaskov | A. Specka | M. Steder | B. Stella | U. Straumann | D. Traynor | B. Tseepeldorj | G. Patel | D. Krucker | L. Méndez | F. Acosta | E. Polytechnique | I. O. A. Sciences | U. Liverpool | 1. Universit'eClaudeBernardLyon | O. University | Stfc | R. Laboratory | G. Schnell | Cppm | A. Schoning | K. Kruger | D. Wegener | Cern | A. Drees | L. Laboratory | Institute for Theoretical | E. Physics | CA 92521 | P. Institut | F. Physik | U. Heidelberg | Faculty of Computer Science | S. Brook | C. Sun | C. Gal | P. Jacobs | U. Paris-Saclay | Oak Ridge | Oak Ridge National Laboratory | F. Huber | B. Lobodzinski | H. Zohrabyan | A. Buniatyan | A. Mehta | I. Physik | M. Mondal | Nuclear Engineering | IJCLab | K. B. C. Avila | A. Deshpande | Lebedev Physical Institute | IN 47907 | Departament de Física Aplicada | University of London | Bucharest | D. F. -. U. R. Tre | Villeurbanne | Siegen | M'erida | Belgium | Kraków | A. Univ | T. Janssen | I. Institut | Wuppertal | J. Dainton | P.R.China. | I. O. Physics | B. Schmookler | Annecy-le-Vieux | G. Tustin | Universiteit Antwerpen | J. Lin | Yerevan | D. Britzger | J. Kretzschmar | E. Perez | W. Lange | J. Zhang | W. Li | Universitat Gottingen | D. Physics | J. Zhang | Z. Zhang | R. vZlebvc'ik | J. Meyer | Michigan 48109 | W. Li | Ulaanbaatar | Mongolia | K. Muller | A. Valk'arov'a | E. Wunsch | J. vZ'avcek | Deutsches Elektronen-Synchrotron Desy | M. Klein | G. Nowak | Montenegro | P. University | M. Klein | M.P.J. Landon | T. Sykora | H. N. I. O. N. Physics | T. Naumann | Universitat Siegen | Oxford | Cinvestav | G. Eckerlin | J. Hessler | J. List | P. Van Mechelen | L. Favart | H. Jung | R. Kogler | W. Lange | K. Lipka | N. Raicevic | R. Horisberger | P. Robmann | A. Baty | H. Klest | S. Lee | S. Park | S. Preins | C. Vall'ee | C. University | M. M. Mondal | A. Mehta | University of Birmingham | Birmingham | Didcot | U. Straumann | Institut fur Kern- und Teilchenphysik | Italy. | J. Katzy | P. Laycock | V. Radescu | E. Rizvi | P. D. Thompson | France. | Spain. | O. Long | T. Hreus | M. Fleischer | Switzerland | D. Haidt | Department of Applied Physics | The H1 collaboration V. Andreev | M. Arratia | A. Baghdasaryan | V. Boudry | A. Buniatyan | L. Bystritskaya | A. J. Campbell | K. Cerny | J. Cvach | J. B. Dainton | K. Daum | A. Deshpande | S. Egli | E. Elsen | A. Fedotov | J. Feltesse | A. Fomenko | C. Gal | J. Gayler | L. Goerlich | N. Gogitidze | T. Greenshaw | G. Grindhammer | R.C.W. Henderson | J. Hladk'y | M. Kapichine | H. T. Klest | P. Kostka | D. Krucker | K. Kruger | S. Levonian | B. List | B. Lobodzinski | E. Malinovski | H.-U. Martyn | S. J. Maxfield | A. B. Meyer | S. Mikocki | V. M. Mikuni | B. Nachman | P. R. Newman | C. Niebuhr | J. E. Olsson | D. Ozerov | C. Pascaud | G. D. Patel | E. Perez | A. Petrukhin | I. Picuric | R. Polifka | S. Preins | T. Ravdandorj | R. Roosen | A. Rostovtsev | M. Rotaru | D.P.C. Sankey | E. Sauvan | S. Schmitt | B. A. Schmookler | L. Schoeffel | A. Schoning | F. Sefkow | S. Shushkevich | Y. Soloviev | P. Sopicki | V. Spaskov | A. Specka | M. Steder | B. Stella | C. Sun | D. Traynor | B. Tseepeldorj | A. Valk'arov'a | C. Vall'ee | J. vZ'avcek | R. vZlebvc'ik | D. Wegener | E. Wunsch | H. Zohrabyan | F. Zomer I. Physikalisches Institut der RWTH | Aachen | University of Michigan | MI 48109 | USA | LAPP | Universit'e de Savoie | CNRSIN2P3 | Annecy-le-Vieux | Inter-University Institute for High Energies ULB-VUB | Brussels | Universiteit Antwerpen | Antwerp | Lawrence Berkeley National Laboratory | Berkeley | CA 94720 | Horia Hulubei National Institute for RD in Physics | Nuclear Engineering | Bucharest | Romania | STFC | Rutherford Appleton Laboratory | Oxfordshire | TU Dortmund | Dortmund | Joint Institute for Nuclear Research | Dubna | CERN | IrfuSPP | CE Saclay | Gif-sur-Yvette | II. Physikalisches Institut | Universitat Gottingen | Gottingen | Physikalisches Institut | Universitat Heidelberg | Houston | TX 77005-1827 | Institute of Nuclear Physics Polish Academy of Sciences | Krakow | Department of Physics | University of Lancaster | Lancaster | University of Liverpool | Liverpool | Queen Mary | London | Aix Marseille Univ | CPPM | Marseille | Institute for Theoretical | Experimental Physics | Moscow | Lebedev Physical Institute | Lomonosov Moscow State University | Institute for Information Transmission Problems RAS | Max-Planck-Institut fur Physik | Munchen | TN 37831 | Joint Laboratory of Optics | Palacky University | Olomouc | IJCLab | Universit'e Paris-Saclay | Orsay | Oxford University | Oxford | LLR | Ecole Polytechnique | Palaiseau | Faculty of Science | University of Montenegro | Podgorica | Montenegro | Academy of Sciences of the Czech Republic | Faculty of Mathematics | Charles University | University of California | Riverside | CA 92521 | Dipartimento di Fisica Universita di Roma Tre | 3 INFNRoma | Shandong University | Shandong | P.R.China | Universitat Siegen | Siegen | Stony Brook University | NY 11794 | Technology of the Mongolian Academy of Sciences | Ulaanbaatar | Mongolia | Ulaanbaatar University | Brookhaven National Laboratory | Upton | NY 11973 | 1 Universit'eClaudeBernardLyon | Villeurbanne | Paul Scherrer Institut | Villigen | Purdue University | West Lafayette | IN 47907 | C Fachbereich | Universitat Wuppertal | Wuppertal | Yerevan Physics Institute | Yerevan | Armenia | Departamento de Fisica Aplicada | CINVESTAV | M'erida | Yucat'an | M'exico | Zeuthen | Institut fur Teilchenphysik | ETH | Zurich | Physik-Institut der Universitat Zurich | C. Fachbereich | TN 37831 | J. Hladk'y | F. Z. I. P. I. D. Rwth | Inter-University Institute for High Energies ULB-VUB | University of Lancaster | Joint Laboratory of Optics | University of Montenegro | Shandong University | NY 11794 | Technology of the Mongolian Academy of Sciences | Ulaanbaatar University | Physik-Institut der Universitat Zurich | D. Physics | The H1 collaboration V. Andreev | University of the Basque Country Upvehu | 48080 Bilbao | TX 77005-1827 | Palack'y University | 3. INFNRoma | U. Wuppertal | Yucat'an | A. W. A. I. C. B. A. C. O. F. C. Desy | U. Siegen | K. Lipka | R. Kogler | Z. Zhang | P. Mechelen | C. Kleinwort | G. Eckerlin | M. Gouzevitch | R. Kogler | P. Thompson | Z. Zhang | R Belgium | P. Thompson | M. Gouzevitch | C. Kleinwort | D. Pitzl | M. Klein | M. Rotaru | B. List | A. Meyer | L. B. N. Laboratory | Institut fur Teilchenphysik | A. Campbell | Poland. | D. Desy

[1]  G. Chahal,et al.  Cluster Hadronisation in Sherpa , 2022, SciPost Physics.

[2]  Zhi-Ming Ma,et al.  An efficient Lorentz equivariant graph neural network for jet tagging , 2022, Journal of High Energy Physics.

[3]  M. Spannowsky,et al.  Energy-weighted message passing: an infra-red and collinear safe graph neural network algorithm , 2021, Journal of High Energy Physics.

[4]  Chase Shimmin,et al.  Particle Convolution for High Energy Physics , 2021, ArXiv.

[5]  S. Schmitt,et al.  Preservation through modernisation: The software of the H1 experiment at HERA , 2021, EPJ Web of Conferences.

[6]  Benjamin Nachman,et al.  Scaffolding Simulations with Deep Learning for High-dimensional Deconvolution , 2021, ArXiv.

[7]  Vinicius Mikuni,et al.  Point cloud transformers applied to collider physics , 2021, Mach. Learn. Sci. Technol..

[8]  F. Kahlhoefer,et al.  Casting a graph net to catch dark showers , 2020, SciPost Physics.

[9]  F. Zomer,et al.  Measurement of jet production cross sections in deep-inelastic ep scattering at HERA , 2017, The European Physical Journal C.

[10]  M. Dolan,et al.  Equivariant energy flow networks for jet tagging , 2020, Physical Review D.

[11]  Jinmian Li,et al.  Boosted Higgs boson jet reconstruction via a graph neural network , 2020, Physical Review D.

[12]  D. Shao,et al.  Jet Charge: A Flavor Prism for Spin Asymmetries at the Electron-Ion Collider. , 2020, Physical review letters.

[13]  S. Russenschuck,et al.  The Large Hadron-Electron Collider at the HL-LHC , 2020, 2007.14491.

[14]  F. Canelli,et al.  ABCNet: an attention-based method for particle tagging , 2020, The European Physical Journal Plus.

[15]  Patrick T. Komiske,et al.  OmniFold: A Method to Simultaneously Unfold All Observables. , 2019, Physical review letters.

[16]  F. Ringer,et al.  Jet angularities in photoproduction at the Electron-Ion Collider , 2019, Physical Review D.

[17]  Eric A. Moreno,et al.  Interaction networks for the identification of boosted H→bb¯ decays , 2019, Physical Review D.

[18]  Eric A. Moreno,et al.  JEDI-net: a jet identification algorithm based on interaction networks , 2019, The European Physical Journal C.

[19]  Huilin Qu,et al.  ParticleNet: Jet Tagging via Particle Clouds , 2019, Physical Review D.

[20]  B. Nachman,et al.  Jet substructure at the Large Hadron Collider: A review of recent advances in theory and machine learning , 2017, Physics Reports.

[21]  Peter Richardson,et al.  Herwig++ 2.2 Release Note , 2008, 0804.3053.

[22]  Steffen Schumann,et al.  Event generation with Sherpa 2.2 , 2019, SciPost Physics.

[23]  F. Ringer,et al.  Soft drop groomed jet angularities at the LHC , 2018, Physics Letters B.

[24]  Patrick T. Komiske,et al.  Energy flow networks: deep sets for particle jets , 2018, Journal of High Energy Physics.

[25]  F. Ringer,et al.  The groomed and ungroomed jet mass distribution for inclusive jet production at the LHC , 2018, Journal of High Energy Physics.

[26]  Alexander Sergeev,et al.  Horovod: fast and easy distributed deep learning in TensorFlow , 2018, ArXiv.

[27]  G. Soyez,et al.  The jet mass distribution after Soft Drop , 2017, The European physical journal. C, Particles and fields.

[28]  W. Adam,et al.  Measurements of jet charge with dijet events in pp collisions at √s=8 TeV(Article)The CMS collaboration, , 2017 .

[29]  M. Herndon,et al.  Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report , 2017, 1803.07977.

[30]  J. Latorre,et al.  Parton distributions from high-precision collider data , 2017, The European Physical Journal C.

[31]  G. Soyez,et al.  A study of jet mass distributions with grooming , 2017, Journal of High Energy Physics.

[32]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[33]  C. Frye,et al.  Factorization for groomed jet substructure beyond the next-to-leading logarithm , 2016, Journal of High Energy Physics.

[34]  C. Frye,et al.  Precision physics with pile-up insensitive observables , 2016, 1603.06375.

[35]  Johannes Bellm,et al.  Herwig 7.0/Herwig++ 3.0 release note , 2015, 1512.01178.

[36]  H. K. Lou,et al.  Towards an understanding of the correlations in jet substructure , 2015, The European Physical Journal C.

[37]  Stefan Prestel,et al.  The midpoint between dipole and parton showers , 2015, 1506.05057.

[38]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[39]  Alan D. Martin,et al.  Parton distributions in the LHC era: MMHT 2014 PDFs , 2014, The European physical journal. C, Particles and fields.

[40]  Peter Skands,et al.  An introduction to PYTHIA 8.2 , 2014, Comput. Phys. Commun..

[41]  W. Waalewijn,et al.  Gaining (mutual) information about quark/gluon discrimination , 2014, Journal of High Energy Physics.

[42]  H. Collaboration Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling alpha_s , 2014, 1406.4709.

[43]  S. D. Ellis,et al.  Boosted objects and jet substructure at the LHC. Report of BOOST2012, held at IFIC Valencia, 23rd–27th of July 2012 , 2014, The European Physical Journal C.

[44]  F. Pandolfi Search for the Standard Model Higgs Boson in the H → ZZ → l + l - qq Decay Channel at CMS , 2013 .

[45]  Leif Lönnblad,et al.  Merging multi-leg NLO matrix elements with parton showers , 2012, 1211.7278.

[46]  W. Waalewijn Calculating the charge of a jet , 2012, 1209.3019.

[47]  F. Siegert,et al.  QCD matrix elements + parton showers. The NLO case , 2012, Journal of High Energy Physics.

[48]  V. Cerný,et al.  Inclusive deep inelastic scattering at high Q2 with longitudinally polarised lepton beams at HERA , 2012, 1310.0968.

[49]  David M. South,et al.  The H1 Data Preservation Project , 2012, ArXiv.

[50]  V. Cerný,et al.  Determination of the integrated luminosity at HERA using elastic QED Compton events , 2012, 1205.2448.

[51]  C. Collaboration,et al.  Shape, transverse size, and charged-hadron multiplicity of jets in pp collisions at sqrt(s) = 7 TeV , 2012, 1204.3170.

[52]  S. D. Ellis,et al.  Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarksReport prepared by the participants of the BOOST 2011 Workshop at Princeton University, 22–26 May 2011. L Asquith (lasquith@hep.anl.gov), S Rappoccio (rappocc@fnal.gov) and C K Vermilion (verm@uw.edu), editors. , 2011, 1201.0008.

[53]  E. Hennekemper Measurement of D ∗± Meson Production and Determi-nation of F c ¯ c 2 at low Q 2 in Deep-Inelastic Scattering at HERA , 2012 .

[54]  A. Bocci,et al.  Measurement of the jet fragmentation function and transverse profile in proton-proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector , 2011, 1109.5816.

[55]  Atlas Collaboration Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy sqrt(s) = 7 TeV with the ATLAS detector , 2011, 1107.3311.

[56]  Burke,et al.  Inclusive Charged-Particle Distribution in Nearly Threefold-Symmetric Three-Jet Events at E, = 29 GeV , 2011 .

[57]  R. Kogler Measurement of jet production in deep-inelastic e p scattering at HERA , 2011 .

[58]  Frank Siegert,et al.  QCD matrix elements and truncated showers , 2009, 0903.1219.

[59]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[60]  Walter T. Giele,et al.  A Simple shower and matching algorithm , 2007, 0707.3652.

[61]  S. Schumann,et al.  A Parton shower algorithm based on Catani-Seymour dipole factorisation , 2007, 0709.1027.

[62]  M. Cacciari,et al.  Dispelling the N3 myth for the kt jet-finder , 2005, hep-ph/0512210.

[63]  P. G. Verdini,et al.  Bose-Einstein correlations in W-pair decays with an event-mixing technique , 2005 .

[64]  M. Tasevsky Scaling violations of quark and gluon jet fragmentation functions in $e^{+} e^{-}$ annihilations , 2004, hep-ex/0407045.

[65]  E. al.,et al.  Substructure dependence of jet cross sections at HERA and determination of alpha(S) , 2004, hep-ex/0405065.

[66]  J. G. Contreras,et al.  Measurement and QCD analysis of neutral and charged current cross-sections at HERA , 2003 .

[67]  Zeus Collaboration Measurement of subjet multiplicities in neutral current deep inelastic scattering at HERA and determination of $\alpha_s$ , 2002, hep-ex/0212030.

[68]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[69]  E. al.,et al.  The H1 silicon vertex detector , 2000, hep-ex/0002044.

[70]  I. Dremin,et al.  Evolution of average multiplicities of quark and gluon jets , 1999, hep-ph/9910226.

[71]  I. Dremin,et al.  Energy dependence of mean multiplicities in gluon and quark jets at the next-to-next-to-next-to-leading order , 1999, Physics Letters B.

[72]  D. A. E. al The Scale Dependence of the Hadron Multiplicity in Quark and Gluon Jets and a Precise Determination of $C_{A}/C_{F}$ , 1999, hep-ex/9903073.

[73]  The Opal Collaboration,et al.  Experimental properties of gluon and quark jets from a point source , 1999, hep-ex/9903027.

[74]  The Zeus Collaboration,et al.  Measurement of jet shapes in high-$Q^2$ deep inelastic scattering at HERA , 1998, hep-ex/9804001.

[75]  K. Ackerstaff et al.,et al.  Multiplicity distributions of gluon and quark jets and tests of QCD analytic predictions , 1997, hep-ex/9708029.

[76]  M. S. Alam,et al.  Study of gluon versus quark fragmentation in , 1997 .

[77]  Jean-Arcady Meyer,et al.  Test of QCD analytic predictions for the multiplicity ratio between gluon and quark jets , 1996 .

[78]  P. G. Verdini,et al.  Quark and gluon jet properties in symmetric three jet events , 1996 .

[79]  E. Barrelet,et al.  The tracking calorimeter and muon detectors of the H1 experiment at Hera , 1996 .

[80]  M. Campanelli,et al.  The L3 lead-scintillating fiber calorimeter , 1996 .

[81]  A. G. Frodesen,et al.  Energy dependence of the differences between the quark and gluon jet fragmentation , 1996 .

[82]  E. al.,et al.  Measurement of the charged multiplicities in b, c and light quark events from Z0 decays , 1996, hep-ex/9608008.

[83]  G. D'Agostini,et al.  A Multidimensional unfolding method based on Bayes' theorem , 1995 .

[84]  M. J. Pearce,et al.  A model independent measurement of quark and gluon jet properties and differences , 1995 .

[85]  Hannes Jung,et al.  Hard diffractive scattering in high energy ep collisions and the Monte Carlo Generator RAPGAP , 1995 .

[86]  P. G. Verdini,et al.  Study of the subjet structure of quark and gluon jets , 1995 .

[87]  G. Bernardi,et al.  On the Kinematic Reconstruction of Deep Inelastic Scattering at HERA: the $\Sigma$ Method , 1994, hep-ex/9412004.

[88]  H. Spiesberger,et al.  Combined QED and QCD radiative effects in deep inelastic lepton-proton scattering: the Monte Carlo generator DJANGO6 , 1994 .

[89]  H. Kolanoski,et al.  Beam tests and calibration of the H1 liquid argon calorimeter with electrons , 1994 .

[90]  E. Barrelet,et al.  The H 1 liquid argon calorimeter system , 1993 .

[91]  E. Vogel,et al.  Results from pion calibration runs for the H 1 liquid argon calorimeter and comparisons with simulations , 1993 .

[92]  G. E. Richards,et al.  A study of differences between quark and gluon jets using vertex tagging of quark jets , 1993 .

[93]  Ellis,et al.  Successive combination jet algorithm for hadron collisions. , 1993, Physical review. D, Particles and fields.

[94]  J. S. Whitaker,et al.  Measurement of the Charged Multiplicity of Z , 1993 .

[95]  B. Webber,et al.  Jet broadening measures in e + e - annihilation , 1992 .

[96]  L. Lönnblad Ariadne version 4 — A program for simulation of QDC cascades implementing the colour dipole model , 1992 .

[97]  F. W. Brasse,et al.  The H1 detector of HERA , 1992 .

[98]  H. Spiesberger,et al.  HERACLES : an event generator for ep interactions at HERA energies including radiative processes , 1992 .

[99]  N. C. Wood,et al.  A Direct observation of quark - gluon jet differences at LEP , 1991 .

[100]  H. Spiesberger,et al.  Characteristics of radiative events in deep inelasticep scattering at HERA , 1991 .

[101]  N. C. Wood,et al.  A study of coherence of soft gluons in hadron jets , 1990 .

[102]  Ueno,et al.  Comparison of quark and gluon jets produced in high-energy e+e- annihilations. , 1989, Physical review letters.

[103]  F. J. Kirschfink,et al.  Charged multiplicity distributions and correlations ine+e− annihilation at PETRA energies , 1989 .

[104]  O. C. Allkofer,et al.  Analysis of the fragmentation properties of quark and gluon jets at the CERN SPS pp̄ collider , 1986 .

[105]  S. W. Gray,et al.  Comparison of charged particle multiplicities in quark and gluon jets produced in e+e- annihilation at 29 GeV , 1985 .

[106]  J. Hansen,et al.  Measurement of jet fragmentation properties at the CERN pp Collider , 1984 .

[107]  J. Hansen,et al.  Measurement of production and properties of jets at the CERN $$\bar pp$$ collider , 1983 .

[108]  I. Duerdoth,et al.  Experimental evidence for differences in 〈p⊥〉 between quark jets and gluon jets , 1983 .

[109]  B. Webber,et al.  Transverse Momentum Moments of Hadron Distributions in {QCD} Jets , 1981 .

[110]  Richard D Field,et al.  A Parametrization of the Properties of Quark Jets , 1978 .

[111]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[112]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .