Effect of Alkali Metal Perchlor(Iod)ate Type on Boron Ignition: The Role of Oxidizer Phase Change

[1]  Jun Wang,et al.  Promoting the combustion properties of boron powder through in‐situ coating , 2022, Nano Select.

[2]  M. Zachariah,et al.  High-Temperature Interactions of Metal Oxides and a PVDF Binder. , 2022, ACS applied materials & interfaces.

[3]  Huixin Wang,et al.  High energy release boron-based material with oxygen vacancies promoting combustion , 2022, Chemical Engineering Journal.

[4]  Dong Liu,et al.  Effects of aluminum addition on flash ignition and combustion of boron nanoparticles , 2022, Combustion and Flame.

[5]  Jian Zhang,et al.  Encapsulated Boron-based Energetic Spherical Composites with Improved Reaction Efficiency and Combustion Performance , 2022, Chemical Engineering Journal.

[6]  Haneol Lee,et al.  Ignition and oxidation performance of SnO2 coated boron particles: A solid fuel for energetic applications , 2021 .

[7]  M. Zachariah,et al.  Energetic characteristics of hydrogenated amorphous silicon nanoparticles , 2021, Chemical Engineering Journal.

[8]  A. Korotkikh,et al.  Effect of Me/B‐Powder on the Ignition of High‐Energy Materials , 2021, Propellants, Explosives, Pyrotechnics.

[9]  Xiaolin Zheng,et al.  Probing boron thermite energy release at rapid heating rates , 2021 .

[10]  Jianzhong Liu,et al.  Laser ignition and combustion characteristics of micro- and nano-sized boron under different atmospheres and pressures , 2021 .

[11]  E. Dreizin,et al.  Boron-Rich Composite Thermite Powders with Binary Bi2O3·CuO Oxidizers , 2021 .

[12]  Xiaolin Zheng,et al.  Enhancing Mechanical and Combustion Performance of Boron/Polymer Composites via Boron Particle Functionalization. , 2021, ACS applied materials & interfaces.

[13]  M. Zachariah,et al.  Tuning the reactivity and energy release rate of I2O5 based ternary thermite systems , 2021 .

[14]  Xiaolin Zheng,et al.  Facilitating laser ignition and combustion of boron with a mixture of graphene oxide and graphite fluoride , 2020 .

[15]  E. Dreizin,et al.  Bismuth fluoride-coated boron powders as enhanced fuels , 2020 .

[16]  Jianzhong Liu,et al.  Nano carbides-mediated acceleration of energy release behavior of amorphous boron during ignition and combustion , 2020 .

[17]  H. Hng,et al.  Combustion Characteristics of Fluoropolymer Coated Boron Powders , 2020, Combustion Science and Technology.

[18]  E. Dreizin,et al.  Effect of Purity, Surface Modification and Iron Coating on Ignition and Combustion of Boron in Air , 2019 .

[19]  E. Dreizin,et al.  Heterogeneous reaction kinetics for oxidation and combustion of boron , 2019 .

[20]  E. Dreizin,et al.  Transition Metal Catalysts for Boron Combustion , 2019 .

[21]  S. A. Hashim,et al.  Effects of Ti and Mg particles on combustion characteristics of boron–HTPB-based solid fuels for hybrid gas generator in ducted rocket applications , 2019, Acta Astronautica.

[22]  Xiaolin Zheng,et al.  Experimental effective metal oxides to enhance boron combustion , 2019, Combustion and Flame.

[23]  Tao Wu,et al.  Boron ignition and combustion with doped δ-Bi2O3: Bond energy/oxygen vacancy relationships , 2018, Combustion and Flame.

[24]  M. Zachariah,et al.  Ignition of Nanoscale Titanium/Potassium Perchlorate Pyrotechnic Powder: Reaction Mechanism Study , 2018 .

[25]  Yang Wang,et al.  Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics , 2017 .

[26]  M. Zachariah,et al.  Reaction mechanisms of potassium oxysalts based energetic composites , 2017 .

[27]  M. Zachariah,et al.  Aerosol synthesis of phase pure iodine/iodic biocide microparticles , 2017 .

[28]  Tammy Y. Olson,et al.  Ignition and Combustion Characteristics of Nanoaluminum with Copper Oxide Nanoparticles of Differing Oxidation State , 2016 .

[29]  E. Dreizin,et al.  Oxidation kinetics and combustion of boron particles with modified surface , 2016 .

[30]  M. Zachariah,et al.  Probing the Reaction Mechanism of Aluminum/Poly(vinylidene fluoride) Composites. , 2016, The journal of physical chemistry. B.

[31]  Peijin Liu,et al.  Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron , 2016, Journal of Thermal Analysis and Calorimetry.

[32]  Mingquan Ye,et al.  Preparation and Properties of Boron‐Based Nano‐B/NiO Thermite , 2015 .

[33]  M. Zachariah,et al.  Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion , 2015 .

[34]  Jianzhong Liu,et al.  Effect of metal additives on the composition and combustion characteristics of primary combustion products of B-based propellants , 2015, Journal of Thermal Analysis and Calorimetry.

[35]  Jianzhong Liu,et al.  Effect of metal hydrides on the burning characteristics of boron , 2014 .

[36]  Jianzhong Liu,et al.  Role of Oxalic Acid in Promoting Ignition and Combustion of Boron: an Experimental and Theoretical Study , 2014 .

[37]  Jianzhong Liu,et al.  Effect of Initial Oxide Layer on Ignition and Combustion of Boron Powder , 2014 .

[38]  Jianzhong Liu,et al.  Effect of magnesium on the burning characteristics of boron particles , 2014 .

[39]  M. Zachariah,et al.  Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition? , 2013 .

[40]  M. Zachariah,et al.  Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study , 2012 .

[41]  D. Lempert,et al.  Energetic capabilities of high-density composite solid propellants containing zirconium or its hydride , 2011 .

[42]  C. Stoldt,et al.  Thermal analysis of the exothermic reaction between galvanic porous silicon and sodium perchlorate. , 2010, ACS applied materials & interfaces.

[43]  S. Anderson,et al.  Oxide-Free, Catalyst-Coated, Fuel-Soluble, Air-Stable Boron Nanopowder as Combined Combustion Catalyst and High Energy Density Fuel , 2009 .

[44]  M. Zachariah,et al.  Combustion characteristics of boron nanoparticles , 2008 .

[45]  S. G. Hosseini,et al.  Thermal behavior of aluminum powder and potassium perchlorate mixtures by DTA and TG , 2006 .

[46]  K. Kuo,et al.  Ignition and combustion of boron particles in fluorine-containing environments , 2001 .

[47]  S. Yuasa,et al.  Effect of water vapor on ignition and combustion of boron lumps in an oxygen stream , 2000 .

[48]  H. Krier,et al.  Boron suboxides measured during ignition and combustion of boron in shocked Ar/F/O2 and Ar/N2/O2 mixtures , 2000 .

[49]  H. Krier,et al.  Ignition dynamics of boron particles in a shock tube , 1997 .

[50]  K. Kuo,et al.  Ignition and combustion of boron particles , 1996 .

[51]  Tai-Kang Liu,et al.  Combustion characteristics of GAP-coated boron particles and the fuel-rich solid propellant☆ , 1995 .

[52]  Tai-Kang Liu,et al.  Effect of Boron Particle Surface Coating on combustion of solid propellants for ducted rockets , 1991 .

[53]  H. Rabitz,et al.  Kinetics of high-temperature B/O/H/C chemistry , 1991 .

[54]  D. Devlin,et al.  Thermal decomposition and dehydration of sodium perchlorate monohydrate , 1987 .

[55]  Merrill K. King,et al.  Ignition and Combustion of Boron Particles and Clouds , 1982 .

[56]  A. N. Zolotko,et al.  Gasification of boron oxide , 1974 .