Identifying the node spreading influence with largest k-core values

[1]  P. Aragón,et al.  Geographical and Temporal Body Size Variation in a Reptile: Roles of Sex, Ecology, Phylogeny and Ecology Structured in Phylogeny , 2014, PloS one.

[2]  An Zeng,et al.  Iterative resource allocation for ranking spreaders in complex networks , 2014 .

[3]  Sangwook Kim,et al.  Identifying and ranking influential spreaders in complex networks by neighborhood coreness , 2014 .

[4]  Qiang Guo,et al.  Ranking the spreading influence in complex networks , 2013, ArXiv.

[5]  Duanbing Chen,et al.  Path diversity improves the identification of influential spreaders , 2013, ArXiv.

[6]  An Zeng,et al.  Ranking spreaders by decomposing complex networks , 2012, ArXiv.

[7]  Yamir Moreno,et al.  Absence of influential spreaders in rumor dynamics , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Yamir Moreno,et al.  Locating privileged spreaders on an online social network. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Gourab Ghoshal,et al.  Ranking stability and super-stable nodes in complex networks. , 2011, Nature communications.

[10]  Romualdo Pastor-Satorras,et al.  Competing activation mechanisms in epidemics on networks , 2011, Scientific Reports.

[11]  Yi-Cheng Zhang,et al.  Leaders in Social Networks, the Delicious Case , 2011, PloS one.

[12]  Maxi San Miguel,et al.  A measure of individual role in collective dynamics , 2010, Scientific Reports.

[13]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[14]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[15]  Zhi-Xi Wu,et al.  Opinion Spreading And Consensus Formation On Square Lattice , 2007 .

[16]  J. Gleeson,et al.  Seed size strongly affects cascades on random networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Alessandro Vespignani,et al.  Reaction–diffusion processes and metapopulation models in heterogeneous networks , 2007, cond-mat/0703129.

[18]  Fang Zhou,et al.  Biological networks to the analysis of microarray data , 2006 .

[19]  Guanrong Chen,et al.  Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Eran Shir,et al.  A model of Internet topology using k-shell decomposition , 2006, Proceedings of the National Academy of Sciences.

[21]  Sergey N. Dorogovtsev,et al.  K-core Organization of Complex Networks , 2005, Physical review letters.

[22]  Tao Zhou,et al.  Epidemic dynamics on complex networks , 2005, physics/0508096.

[23]  M. Newman Spread of epidemic disease on networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[25]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[26]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[27]  Steve R. White,et al.  Fighting Computer Viruses , 1997 .

[28]  S. Mende,et al.  Lightning between Earth and Space , 1997 .

[29]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[30]  Gert Sabidussi,et al.  The centrality index of a graph , 1966 .

[31]  L. Freeman Centrality in social networks conceptual clarification , 1978 .