Recent Advances in Practical Data Reduction

Over the last two decades, significant advances have been made in the design and analysis of fixedparameter algorithms for a wide variety of graph-theoretic problems. This has resulted in an algorithmic toolbox that is by now well-established. However, these theoretical algorithmic ideas have received very little attention from the practical perspective. We survey recent trends in data reduction engineering results for selected problems. Moreover, we describe concrete techniques that may be useful for future implementations in the area and give open problems and research questions.

[1]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[2]  Arie M. C. A. Koster,et al.  Safe Reduction Rules for Weighted Treewidth , 2002, Algorithmica.

[3]  Rolf Niedermeier,et al.  The Power of Linear-Time Data Reduction for Maximum Matching , 2017, Algorithmica.

[4]  Tobias Friedrich,et al.  Understanding the Effectiveness of Data Reduction in Public Transportation Networks , 2019, WAW.

[5]  Alexander H. G. Rinnooy Kan,et al.  Average Case Analysis of a Heuristic for the Assignment Problem , 1994, Math. Oper. Res..

[6]  Yun Zhang,et al.  The Cluster Editing Problem: Implementations and Experiments , 2006, IWPEC.

[7]  Alessio Conte,et al.  Fast Enumeration of Large k-Plexes , 2017, KDD.

[8]  Stefan Kratsch,et al.  Preprocessing for Treewidth: A Combinatorial Analysis through Kernelization , 2011, SIAM J. Discret. Math..

[9]  Diogo Vieira Andrade,et al.  Fast local search for the maximum independent set problem , 2008, Journal of Heuristics.

[10]  J. W. Walker,et al.  Direct solutions of sparse network equations by optimally ordered triangular factorization , 1967 .

[11]  Ashish Goel,et al.  Perfect matchings in o(n log n) time in regular bipartite graphs , 2009, STOC '10.

[12]  Darren Strash,et al.  Engineering Data Reduction for Nested Dissection , 2020, ALENEX.

[13]  James Trimble An Algorithm for the Exact Treedepth Problem , 2020, SEA.

[14]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[15]  Shaowei Cai,et al.  Improving Local Search for Minimum Weight Vertex Cover by Dynamic Strategies , 2018, IJCAI.

[16]  Lijun Chang,et al.  Computing Maximum Independent Sets over Large Sparse Graphs , 2019, WISE.

[17]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, Algorithmica.

[18]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[19]  Darren Strash,et al.  On the Power of Simple Reductions for the Maximum Independent Set Problem , 2016, COCOON.

[20]  Monika Henzinger,et al.  Shared-Memory Branch-and-Reduce for Multiterminal Cuts , 2019, ALENEX.

[21]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[22]  Peter Sanders,et al.  Graph Partitioning for Independent Sets , 2015, SEA.

[23]  Robert E. Tarjan,et al.  Addendum: Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1985, SIAM J. Comput..

[24]  C. S. Edwards Some Extremal Properties of Bipartite Subgraphs , 1973, Canadian Journal of Mathematics.

[25]  Siavash Vahdati Daneshmand,et al.  Algorithmic approaches to the Steiner problem in networks , 2004 .

[26]  B. Mohar,et al.  Graph Minors , 2009 .

[27]  Matthias Mnich,et al.  Linear Kernels and Linear-Time Algorithms for Finding Large Cuts , 2017, Algorithmica.

[28]  Édouard Bonnet,et al.  The PACE 2018 Parameterized Algorithms and Computational Experiments Challenge: The Third Iteration , 2018, IPEC.

[29]  Peter Sanders,et al.  Finding Near-Optimal Independent Sets at Scale , 2016, ALENEX.

[30]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[31]  Hannes Moser,et al.  Finding optimal solutions for covering and matching problems , 2010 .

[32]  Hua Jiang,et al.  An Exact Algorithm for the Maximum Weight Clique Problem in Large Graphs , 2017, AAAI.

[33]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[34]  Darren Strash,et al.  Finding All Global Minimum Cuts In Practice , 2020, ESA.

[35]  Andrew V. Goldberg,et al.  Experimental study of minimum cut algorithms , 1997, SODA '97.

[36]  Darren Strash,et al.  Boosting Data Reduction for the Maximum Weight Independent Set Problem Using Increasing Transformations , 2020, ALENEX.

[37]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[38]  Michal Pilipczuk,et al.  A ck n 5-Approximation Algorithm for Treewidth , 2016, SIAM J. Comput..

[39]  Sebastian Böcker,et al.  A golden ratio parameterized algorithm for Cluster Editing , 2011, J. Discrete Algorithms.

[40]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[41]  Mingyu Xiao,et al.  Simple and Improved Parameterized Algorithms for Multiterminal Cuts , 2009, Theory of Computing Systems.

[42]  Shaowei Cai,et al.  Balance between Complexity and Quality: Local Search for Minimum Vertex Cover in Massive Graphs , 2015, IJCAI.

[43]  Hisao Tamaki,et al.  Positive-instance driven dynamic programming for treewidth , 2017, Journal of Combinatorial Optimization.

[44]  Christian Schulz,et al.  Shared-Memory Exact Minimum Cuts , 2018, 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[45]  S. Arnborg,et al.  Characterization and recognition of partial 3-trees , 1986 .

[46]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[47]  Pawel Gawrychowski,et al.  Minimum Cut in O(m log2n) Time , 2019, ArXiv.

[48]  Anurag Verma,et al.  Solving the Maximum Clique and Vertex Coloring Problems on Very Large Sparse Networks , 2015, INFORMS J. Comput..

[49]  Bora Uçar,et al.  Engineering Fast Almost Optimal Algorithms for Bipartite Graph Matching , 2020, ESA.

[50]  Minghao Yin,et al.  NuMWVC: A novel local search for minimum weighted vertex cover problem , 2018, AAAI.

[51]  René van Bevern Towards Optimal and Expressive Kernelization for d-Hitting Set , 2011, Algorithmica.

[52]  Peter Sanders,et al.  Accelerating Local Search for the Maximum Independent Set Problem , 2016, SEA.

[53]  Cleve Ashcraft,et al.  Compressed Graphs and the Minimum Degree Algorithm , 1995, SIAM J. Sci. Comput..

[54]  Lijun Chang,et al.  Efficient Maximum Clique Computation over Large Sparse Graphs , 2019, KDD.

[55]  Takuya Akiba,et al.  Branch-and-reduce exponential/FPT algorithms in practice: A case study of vertex cover , 2014, Theor. Comput. Sci..

[56]  Michael A. Langston,et al.  The maximum clique enumeration problem: algorithms, applications, and implementations , 2011, BMC Bioinformatics.

[57]  Toshihide Ibaraki,et al.  Implementing an efficient minimum capacity cut algorithm , 1994, Math. Program..

[58]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[59]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[60]  Yuan-Shun Dai,et al.  A Fast Algorithm to Compute Maximum k-Plexes in Social Network Analysis , 2017, AAAI.

[61]  David R. Karger,et al.  Minimum cuts in near-linear time , 1998, JACM.

[62]  Christian Schulz,et al.  Practical Minimum Cut Algorithms , 2017, ALENEX.

[63]  Jiong Guo,et al.  A More Effective Linear Kernelization for Cluster Editing , 2007, ESCAPE.

[64]  Roded Sharan,et al.  A Polynomial Approximation Algorithm for the Minimum Fill-In Problem , 2000, SIAM J. Comput..

[65]  Thorsten Koch,et al.  Reduction techniques for the prize collecting Steiner tree problem and the maximum-weight connected subgraph problem , 2019, Networks.

[66]  Faisal N. Abu-Khzam,et al.  Combinatorial Text Classification: the Effect of Multi-Parameterized Correlation Clustering , 2019, 2019 First International Conference on Graph Computing (GC).

[67]  Pablo Moscato,et al.  A Kernelisation Approach for Multiple d-Hitting Set and Its Application in Optimal Multi-Drug Therapeutic Combinations , 2010, PloS one.

[68]  Liming Cai,et al.  Advice Classes of Parameterized Tractability , 1997, Ann. Pure Appl. Log..

[69]  Etsuji Tomita,et al.  An Efficient Branch-and-bound Algorithm for Finding a Maximum Clique with Computational Experiments , 2001, J. Glob. Optim..

[70]  Hiroshi Nagamochi,et al.  Confining sets and avoiding bottleneck cases: A simple maximum independent set algorithm in degree-3 graphs , 2013, Theor. Comput. Sci..

[71]  Clyde L. Monma,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..

[72]  Panos M. Pardalos,et al.  On maximum clique problems in very large graphs , 1999, External Memory Algorithms.

[73]  Fabrizio Grandoni,et al.  A measure & conquer approach for the analysis of exact algorithms , 2009, JACM.

[74]  Blair D. Sullivan,et al.  Approximating Vertex Cover using Structural Rounding , 2020, ALENEX.

[75]  Lijun Chang,et al.  Efficient maximum clique computation and enumeration over large sparse graphs , 2020, The VLDB Journal.

[76]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[77]  Hristo Djidjev,et al.  Solving large minimum vertex cover problems on a quantum annealer , 2019, CF.

[78]  Kristian G. Olesen,et al.  Maximal Prime Subgraph Decomposition of Bayesian Networks , 2001, FLAIRS.

[79]  Michael R. Fellows,et al.  Diversity of Solutions: An Exploration Through the Lens of Fixed-Parameter Tractability Theory , 2019, IJCAI.

[80]  Jianer Chen,et al.  An O *(1.84 k ) Parameterized Algorithm for the Multiterminal Cut Problem , 2013, FCT.

[81]  Shaowei Cai,et al.  Fast Solving Maximum Weight Clique Problem in Massive Graphs , 2016, IJCAI.

[82]  Alejandro A. Schäffer,et al.  Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..

[83]  Alan George,et al.  The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..

[84]  Jianer Chen,et al.  A 2k kernel for the cluster editing problem , 2012, J. Comput. Syst. Sci..

[85]  Pinar Heggernes,et al.  Generalized Graph Clustering: Recognizing (p, q)-Cluster Graphs , 2010, WG.

[86]  Yoichi Iwata,et al.  Linear-Time FPT Algorithms via Network Flow , 2013, SODA.

[87]  Darren Strash,et al.  Engineering Kernelization for Maximum Cut , 2019, ALENEX.

[88]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[89]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[90]  Yoichi Iwata,et al.  Separator-Based Pruned Dynamic Programming for Steiner Tree , 2019, AAAI.

[91]  Ivan C. Martins,et al.  Efficient algorithms for cluster editing , 2016, J. Comb. Optim..

[92]  Christian Komusiewicz,et al.  The First Parameterized Algorithms and Computational Experiments Challenge , 2017, IPEC.

[93]  Hisao Tamaki,et al.  Treedepth Parameterized by Vertex Cover Number , 2016, IPEC.

[94]  John K. Reid,et al.  Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems , 1996, TOMS.

[95]  René van Bevern Towards Optimal and Expressive Kernelization for d-Hitting Set , 2012, COCOON.

[96]  Thorsten Koch,et al.  Building Optimal Steiner Trees on Supercomputers by Using up to 43, 000 Cores , 2019, CPAIOR.

[97]  Pinar Heggernes,et al.  Faster Parameterized Algorithms for Minimum Fill-in , 2010, Algorithmica.

[98]  Tuukka Korhonen SMS in PACE 2020 , 2020, ArXiv.

[99]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[100]  Alexander Gellner,et al.  Engineering Generalized Reductions for the Maximum Weight Independent Set Problem , 2020 .

[101]  Roded Sharan,et al.  A polynomial approximation algorithm for the minimum fill-in problem , 1998, STOC '98.

[102]  Rolf Niedermeier,et al.  Data Reduction for Maximum Matching on Real-World Graphs , 2018, ESA.

[103]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[104]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[105]  Yixin Cao,et al.  Minimum Fill-In: Inapproximability and Almost Tight Lower Bounds , 2016, SODA.

[106]  Haim Kaplan,et al.  Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs , 1999, SIAM J. Comput..

[107]  William H. Cunningham The Optimal Multiterminal Cut Problem , 1989, Reliability Of Computer And Communication Networks.

[108]  Bjoern Andres,et al.  Combinatorial Persistency Criteria for Multicut and Max-Cut , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Di Wang,et al.  Local Flow Partitioning for Faster Edge Connectivity , 2017, SODA.

[110]  Darren Strash,et al.  WeGotYouCovered: The Winning Solver from the PACE 2019 Challenge, Vertex Cover Track , 2020, CSC.

[111]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..

[112]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[113]  Christian Komusiewicz,et al.  Cluster editing with locally bounded modifications , 2012, Discret. Appl. Math..

[114]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[115]  Mark Jones,et al.  Max-Cut Parameterized Above the Edwards-Erdős Bound , 2014, Algorithmica.

[116]  Ioan Todinca,et al.  Treewidth and Minimum Fill-in: Grouping the Minimal Separators , 2001, SIAM J. Comput..

[117]  Peter Sanders,et al.  Heuristic initialization for bipartite matching problems , 2010, JEAL.

[118]  Bora Uçar,et al.  Karp-Sipser based kernels for bipartite graph matching , 2020, ALENEX.

[119]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[120]  Tobias Polzin,et al.  Algorithms for the Steiner problem in networks , 2003 .

[121]  Faisal N. Abu-Khzam,et al.  A kernelization algorithm for d-Hitting Set , 2010, J. Comput. Syst. Sci..

[122]  Michael Jünger,et al.  Practical Performance of Efficient Minimum Cut Algorithms , 2000, Algorithmica.

[123]  Fedor V. Fomin,et al.  Subexponential parameterized algorithm for minimum fill-in , 2011, SODA.

[124]  Rolf H M Ohring,et al.  Fachbereich 3 Mathematik Cardinality Matching: Heuristic Search for Augmenting Paths Cardinality Matching: Heuristic Search for Augmenting Paths , 1995 .

[125]  Abdul Sattar,et al.  NuMVC: An Efficient Local Search Algorithm for Minimum Vertex Cover , 2014, J. Artif. Intell. Res..

[126]  Fedor V. Fomin,et al.  Kernelization: Theory of Parameterized Preprocessing , 2019 .

[127]  Faisal N. Abu-Khzam,et al.  Combinatorial Code Classification & Vulnerability Rating , 2020, 2020 Second International Conference on Transdisciplinary AI (TransAI).

[128]  Wanru Gao,et al.  Scaling up Local Search for Minimum Vertex Cover in Large Graphs by Parallel Kernelization , 2017, Australasian Conference on Artificial Intelligence.

[129]  Giovanni Rinaldi,et al.  An efficient algorithm for the minimum capacity cut problem , 1990, Math. Program..

[130]  Peter Sanders,et al.  KaHIP v0.53 - Karlsruhe High Quality Partitioning - User Guide , 2013, ArXiv.

[131]  Sara Cohen,et al.  Efficient Enumeration of Maximal k-Plexes , 2015, SIGMOD Conference.

[132]  Michael R. Fellows,et al.  Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments , 2004, ALENEX/ANALC.

[133]  D. Rose Triangulated graphs and the elimination process , 1970 .

[134]  Lars Jaffke,et al.  Fine-Grained Parameterized Complexity Analysis of Graph Coloring Problems , 2017, CIAC.

[135]  Mechthild Stoer,et al.  A simple min-cut algorithm , 1997, JACM.

[136]  StrashDarren,et al.  Listing All Maximal Cliques in Large Sparse Real-World Graphs , 2013 .

[137]  Christian Komusiewicz,et al.  The PACE 2017 Parameterized Algorithms and Computational Experiments Challenge: The Second Iteration , 2017, IPEC.

[138]  Stefan Fafianie,et al.  A Shortcut to (Sun)Flowers: Kernels in Logarithmic Space or Linear Time , 2015, MFCS.

[139]  Shaowei Cai,et al.  Finding A Small Vertex Cover in Massive Sparse Graphs: Construct, Local Search, and Preprocess , 2017, J. Artif. Intell. Res..

[140]  Rong Chen,et al.  An Exact Algorithm for Maximum k-Plexes in Massive Graphs , 2018, IJCAI.

[141]  Rolf Niedermeier,et al.  An efficient fixed-parameter algorithm for 3-Hitting Set , 2003, J. Discrete Algorithms.

[142]  D. Matula A linear time 2 + ε approximation algorithm for edge connectivity , 1993, SODA 1993.

[143]  Hiroshi Nagamochi,et al.  Exact Algorithms for Maximum Independent Set , 2013, ISAAC.

[144]  Christian Schulz,et al.  Faster Parallel Multiterminal Cuts , 2020, ACDA.

[145]  Sebastian Böcker,et al.  Exact Algorithms for Cluster Editing: Evaluation and Experiments , 2008, Algorithmica.

[146]  Jeffrey Xu Yu,et al.  Efficient Weighted Independent Set Computation over Large Graphs , 2020, 2020 IEEE 36th International Conference on Data Engineering (ICDE).

[147]  Peter Sanders,et al.  Engineering a scalable high quality graph partitioner , 2009, 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS).

[148]  Faisal N. Abu-Khzam On the complexity of multi-parameterized cluster editing , 2017, J. Discrete Algorithms.

[149]  Bart M. P. Jansen,et al.  On Sparsification for Computing Treewidth , 2013, Algorithmica.

[150]  Wei Li,et al.  Computing A Near-Maximum Independent Set in Linear Time by Reducing-Peeling , 2017, SIGMOD Conference.

[151]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[152]  Bart M. P. Jansen,et al.  Optimal Data Reduction for Graph Coloring Using Low-Degree Polynomials , 2017, IPEC.

[153]  Joseph Naor,et al.  Simplex partitioning via exponential clocks and the multiway cut problem , 2013, STOC '13.

[154]  Minghao Yin,et al.  An Exact Algorithm for Minimum Weight Vertex Cover Problem in Large Graphs , 2019, ArXiv.

[155]  Peter Rossmanith,et al.  A Faster Parameterized Algorithm for Treedepth , 2014, ICALP.

[156]  Christian Schulz,et al.  Scalable Kernelization for Maximum Independent Sets , 2017, ALENEX.

[157]  Hamid Doust,et al.  Cluster Editing , 2017, Encyclopedia of Machine Learning and Data Mining.

[158]  P. Hammer,et al.  Pseudo-Boolean functions and stability of graphs , 1984 .

[159]  Rolf Niedermeier,et al.  Graph-Modeled Data Clustering: Fixed-Parameter Algorithms for Clique Generation , 2003, CIAC.

[160]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[161]  Sebastian Böcker,et al.  Going weighted: Parameterized algorithms for cluster editing , 2008, Theor. Comput. Sci..

[162]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[163]  Kaile Su,et al.  A Reduction based Method for Coloring Very Large Graphs , 2017, IJCAI.

[164]  René van Bevern,et al.  Optimal-size problem kernels for d-Hitting Set in linear time and space , 2020, Inf. Process. Lett..

[165]  Christian Schulz,et al.  Exactly Solving the Maximum Weight Independent Set Problem on Large Real-World Graphs , 2018, ALENEX.

[166]  Jianer Chen,et al.  An O(1.84k) parameterized algorithm for the multiterminal cut problem , 2013, Inf. Process. Lett..

[167]  Thorsten Koch,et al.  SCIP-Jack - A Solver for STP and Variants with Parallelization Extensions: An Update , 2017, OR.

[168]  Matthias F. Stallmann,et al.  Graph Profiling for Vertex Cover: Targeted Reductions in a Branch and Reduce Solver , 2020, ArXiv.

[169]  Hua Jiang,et al.  On minimization of the number of branches in branch-and-bound algorithms for the maximum clique problem , 2017, Comput. Oper. Res..

[170]  James B. Orlin,et al.  A faster algorithm for finding the minimum cut in a graph , 1992, SODA '92.

[171]  Martin Grötschel,et al.  An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design , 1988, Oper. Res..

[172]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[173]  Johannes Klaus Fichte,et al.  The PACE 2019 Parameterized Algorithms and Computational Experiments Challenge: The Fourth Iteration (Invited Paper) , 2019, IPEC.

[174]  Sebastian Böcker,et al.  A Fixed-Parameter Approach for Weighted Cluster Editing , 2007, APBC.