Chemical design of nanoparticle probes for high-performance magnetic resonance imaging.

Synthetic magnetic nanoparticles (MNPs) are emerging as versatile probes in biomedical applications, especially in the area of magnetic resonance imaging (MRI). Their size, which is comparable to biological functional units, and their unique magnetic properties allow their utilization as molecular imaging probes. Herein, we present an overview of recent breakthroughs in the development of new synthetic MNP probes with which the sensitive and target-specific observation of biological events at the molecular and cellular levels is possible.

[1]  Jeff W M Bulte,et al.  Iron oxide MR contrast agents for molecular and cellular imaging , 2004, NMR in biomedicine.

[2]  M. Bawendi,et al.  Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles , 2005 .

[3]  Mingyuan Gao,et al.  Preparation of Biocompatible Magnetite Nanocrystals for In Vivo Magnetic Resonance Detection of Cancer , 2006 .

[4]  Christie M. Sayes,et al.  Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer , 2006 .

[5]  R Weissleder,et al.  High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. , 1999, Bioconjugate chemistry.

[6]  A. Tanimoto,et al.  Application of superparamagnetic iron oxide to imaging of hepatocellular carcinoma. , 2006, European journal of radiology.

[7]  Jinwoo Cheon,et al.  Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. , 2007, Chemical communications.

[8]  Christof M Niemeyer,et al.  Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. , 2006, Small.

[9]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[10]  Jin-Sil Choi,et al.  Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. , 2006, Angewandte Chemie.

[11]  A. Rogach,et al.  Colloidal synthesis and self-assembly of CoPt(3) nanocrystals. , 2002, Journal of the American Chemical Society.

[12]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[13]  T Berns,et al.  Clinical results with Resovist: a phase 2 clinical trial. , 1995, Radiology.

[14]  Jackie Y Ying,et al.  Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. , 2005, Journal of the American Chemical Society.

[15]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[16]  Chenjie Xu,et al.  Linking Hydrophilic Macromolecules to Monodisperse Magnetite (Fe(3)O(4)) Nanoparticles via Trichloro-s-triazine. , 2006, Chemistry of materials : a publication of the American Chemical Society.

[17]  Jeff W M Bulte,et al.  Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. , 2003, Radiology.

[18]  R. Lawrence Development and comparison of iron dextran products. , 1998, PDA journal of pharmaceutical science and technology.

[19]  Xiaoping P. Hu,et al.  Functionalization and peptide-based delivery of magnetic nanoparticles as an intracellular MRI contrast agent , 2004, JBIC Journal of Biological Inorganic Chemistry.

[20]  Hao Zeng,et al.  DNA-functionalized MFe2O4 (M = Fe, Co, or Mn) nanoparticles and their hybridization to DNA-functionalized surfaces. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[21]  Athanasios B. Bourlinos,et al.  Surface Modification of Ultrafine Magnetic Iron Oxide Particles , 2002 .

[22]  A. Hirano,et al.  Vascular structures in brain tumors. , 1975, Human pathology.

[23]  F. Schüth,et al.  Magnetische Nanopartikel: Synthese, Stabilisierung, Funktionalisierung und Anwendung , 2007 .

[24]  P. Jacobs,et al.  Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. , 1995, Magnetic resonance imaging.

[25]  S. H. Koenig,et al.  Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles , 1995, Magnetic resonance in medicine.

[26]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[27]  Jung Ho Yu,et al.  Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres. , 2006, Angewandte Chemie.

[28]  Chad A. Mirkin,et al.  Nanobiotechnology II: More Concepts and Applications , 2007 .

[29]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[30]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[31]  Sangeeta N. Bhatia,et al.  The European charter for counteracting obesity: A late but important step towards action. Observations on the WHO-Europe ministerial conference, Istanbul, November 15–17, 2006 , 2007, The international journal of behavioral nutrition and physical activity.

[32]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[33]  Jinwoo Cheon,et al.  Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. , 2006, Angewandte Chemie.

[34]  Jin-Sil Choi,et al.  Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. , 2005, The journal of physical chemistry. B.

[35]  I. Nöbauer-Huhmann,et al.  The optimal use of contrast agents at high field MRI , 2006, European Radiology.

[36]  J. Cheon,et al.  Synthesis of "solid solution" and "core-shell" type cobalt--platinum magnetic nanoparticles via transmetalation reactions. , 2001, Journal of the American Chemical Society.

[37]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[38]  Heather Kalish,et al.  Comparison of Transfection Agents in Forming Complexes with Ferumoxides, Cell Labeling Efficiency, and Cellular Viability , 2004, Molecular imaging.

[39]  R. Weissleder,et al.  Molecular imaging of gene therapy for cancer , 2004, Gene Therapy.

[40]  Lin He,et al.  Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization , 2000 .

[41]  Jinwoo Cheon,et al.  Biocompatible heterostructured nanoparticles for multimodal biological detection. , 2006, Journal of the American Chemical Society.

[42]  Jin Xie,et al.  Synthesis and stabilization of monodisperse Fe nanoparticles. , 2006, Journal of the American Chemical Society.

[43]  André Nel,et al.  ATMOSPHERE: Enhanced: Air Pollution-Related Illness: Effects of Particles , 2005 .

[44]  Zhenghe Xu,et al.  Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using 16-Mercaptohexadecanoic Acid , 1995 .

[45]  Gustaaf Borghs,et al.  Silane Ligand Exchange to Make Hydrophobic Superparamagnetic Nanoparticles Water-Dispersible , 2007 .

[46]  Taeghwan Hyeon,et al.  Synthesis of monodisperse spherical nanocrystals. , 2007, Angewandte Chemie.

[47]  L. Liz‐Marzán,et al.  Water-based ferrofluids from FexPt1-x nanoparticles synthesized in organic media. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[48]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[49]  Shouheng Sun,et al.  Recent Advances in Chemical Synthesis, Self‐Assembly, and Applications of FePt Nanoparticles , 2006 .

[50]  Tobias Vossmeyer,et al.  CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift , 1994 .

[51]  Bing Xu,et al.  FePt@CoS(2) yolk-shell nanocrystals as a potent agent to kill HeLa cells. , 2007, Journal of the American Chemical Society.

[52]  Jinwoo Cheon,et al.  Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging , 2007, Nature Medicine.

[53]  Taeghwan Hyeon,et al.  Chemical synthesis of magnetic nanoparticles. , 2003, Chemical communications.

[54]  Jin-Sil Choi,et al.  In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. , 2005, Journal of the American Chemical Society.

[55]  P. Delvenne,et al.  Different mechanisms are implicated in ERBB2 gene overexpression in breast and in other cancers , 2003, British Journal of Cancer.

[56]  Nathan Kohler,et al.  A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. , 2004, Journal of the American Chemical Society.

[57]  Jinwoo Cheon,et al.  Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. , 2005, Journal of the American Chemical Society.

[58]  F. Szoka,et al.  Lipid-based Nanoparticles for Nucleic Acid Delivery , 2007, Pharmaceutical Research.

[59]  Young-wook Jun,et al.  Formkontrolle von Halbleiter- und Metalloxid-Nanokristallen durch nichthydrolytische Kolloidverfahren , 2006 .

[60]  Andrew D. Maynard,et al.  Nanotechnology: assessing the risks , 2006 .

[61]  Yasuyuki Kurihara,et al.  The RNA ligands for mouse proline-rich RNA-binding protein (mouse Prrp) contain two consensus sequences in separate loop structure , 2005, Nucleic acids research.

[62]  Hao Zeng,et al.  Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. , 2005, The journal of physical chemistry. B.

[63]  A. P. Alivisatos,et al.  A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides , 1999 .

[64]  F. Gazeau,et al.  In vivo cellular imaging of lymphocyte trafficking by MRI: A tumor model approach to cell‐based anticancer therapy , 2006, Magnetic resonance in medicine.

[65]  Hua Ai,et al.  Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. , 2006, Nano letters.

[66]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[67]  M. E. Williams,et al.  Versatile routes toward functional, water-soluble nanoparticles via trifluoroethylester-PEG-thiol ligands. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[68]  J. Silver,et al.  Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase , 1985, The Journal of cell biology.

[69]  Jong-Nam Park,et al.  Synthese monodisperser sphärischer Nanokristalle , 2007 .

[70]  Anna Moore,et al.  In vivo magnetic resonance imaging of transgene expression , 2000, Nature Medicine.

[71]  A. Fischman,et al.  Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. , 1991, Radiology.

[72]  J. Cheon,et al.  Shape evolution of single-crystalline iron oxide nanocrystals. , 2004, Journal of the American Chemical Society.

[73]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[74]  V. Rotello,et al.  Surface PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for Biological Applications , 2005 .

[75]  Marie-France Bellin,et al.  MR contrast agents, the old and the new. , 2006, European journal of radiology.

[76]  A. Gupta,et al.  Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies , 2004, IEEE Transactions on NanoBioscience.

[77]  Young-wook Jun,et al.  The President and Society for Analytical Chemistry Gold Medallist , 1973 .

[78]  Anna Moore,et al.  In vivo imaging of siRNA delivery and silencing in tumors , 2007, Nature Medicine.

[79]  Dwight G Nishimura,et al.  FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents , 2006, Nature materials.

[80]  J A Firth,et al.  Endothelial barriers: from hypothetical pores to membrane proteins * , 2002, Journal of anatomy.

[81]  M. Garnett,et al.  Nanomedicines and nanotoxicology: some physiological principles. , 2006, Occupational medicine.

[82]  Ming Zhao,et al.  Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent , 2001, Nature Medicine.

[83]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[84]  Elizabeth C. Theil Ferritin: at the crossroads of iron and oxygen metabolism. , 2003, The Journal of nutrition.

[85]  T. A. Taton,et al.  Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. , 2005, Nano letters.

[86]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[87]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[88]  Klaas Nicolay,et al.  MRI contrast agents: current status and future perspectives. , 2007, Anti-cancer agents in medicinal chemistry.

[89]  M. Bawendi,et al.  Phosphine oxide polymer for water-soluble nanoparticles. , 2005, Journal of the American Chemical Society.

[90]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[91]  Sabino Veintemillas-Verdaguer,et al.  Surface and Internal Spin Canting in γ-Fe2O3 Nanoparticles , 1999 .

[92]  Yongmin Kim,et al.  Transfection of Neuroprogenitor Cells with Iron Nanoparticles for Magnetic Resonance Imaging Tracking: Cell Viability, Differentiation, and Intracellular Localization , 2005, Molecular Imaging and Biology.

[93]  J. Ying,et al.  Nanoparticle Architectures Templated by SiO2/Fe2O3 Nanocomposites , 2006 .

[94]  R Weissleder,et al.  Superparamagnetic iron oxide: pharmacokinetics and toxicity. , 1989, AJR. American journal of roentgenology.

[95]  Jinwoo Cheon,et al.  Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. , 2005, Journal of the American Chemical Society.