Joint dynamic probabilistic constraints with projected linear decision rules

We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (infinite-dimensional) problem and approximating problems working with projections from different subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically.

[1]  J. Eheart,et al.  Aquifer remediation design under uncertainty using a new chance constrained programming technique , 1993 .

[2]  Claudia A. Sagastizábal,et al.  Exploiting the structure of autoregressive processes in chance-constrained multistage stochastic linear programs , 2012, Oper. Res. Lett..

[3]  R. Jagannathan,et al.  Chance-Constrained Programming with Joint Constraints , 1974, Oper. Res..

[4]  A. Prékopa PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS WITH A RANDOM TECHNOLOGY MATRIX , 1974 .

[5]  Miguel A. Lejeune,et al.  Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems , 2012, Oper. Res..

[6]  István Deák Subroutines for Computing Normal Probabilities of Sets—Computer Experiences , 2000, Ann. Oper. Res..

[7]  E. Polak,et al.  Extensions of Stochastic Optimization Results to Problems with System Failure Probability Functions , 2007 .

[8]  René Henrion,et al.  Convexity of chance constraints with independent random variables , 2008, Comput. Optim. Appl..

[9]  René Henrion,et al.  A model for dynamic chance constraints in hydro power reservoir management , 2010, Eur. J. Oper. Res..

[10]  A. Genz,et al.  Computation of Multivariate Normal and t Probabilities , 2009 .

[11]  Pierre Carpentier,et al.  Multi-usage hydropower single dam management: chance-constrained optimization and stochastic viability , 2017 .

[12]  Tamás Szántai,et al.  An optimal regulation of a storage level with application to the water level regulation of a lake , 1979 .

[13]  René Henrion,et al.  On joint probabilistic constraints with Gaussian coefficient matrix , 2011, Oper. Res. Lett..

[14]  Alexander Kogan,et al.  Threshold Boolean form for joint probabilistic constraints with random technology matrix , 2014, Math. Program..

[15]  Claudia A. Sagastizábal,et al.  The value of rolling-horizon policies for risk-averse hydro-thermal planning , 2012, Eur. J. Oper. Res..

[16]  A. Prékopa,et al.  Flood control reservoir system design using stochastic programming , 1978 .

[17]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[18]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[19]  Jean-Philippe Chancelier,et al.  Dynamic consistency for stochastic optimal control problems , 2012, Ann. Oper. Res..

[20]  S. Kataoka A Stochastic Programming Model , 1963 .

[21]  M. Bayazit,et al.  A Chance-Constrained LP Model for Short Term Reservoir Operation Optimization , 1999 .

[22]  C. Panne,et al.  Minimum-Cost Cattle Feed Under Probabilistic Protein Constraints , 1963 .

[23]  Marco Pavone,et al.  Chance-constrained dynamic programming with application to risk-aware robotic space exploration , 2015, Autonomous Robots.

[24]  Miguel A. Lejeune Pattern definition of the p-efficiency concept , 2012, Ann. Oper. Res..

[25]  René Henrion,et al.  Gradient Formulae for Nonlinear Probabilistic Constraints with Gaussian and Gaussian-Like Distributions , 2014, SIAM J. Optim..

[26]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[27]  Benjamin Van Roy,et al.  On Constraint Sampling in the Linear Programming Approach to Approximate Dynamic Programming , 2004, Math. Oper. Res..

[28]  N. C. P. Edirisinghe,et al.  Capacity Planning Model for a Multipurpose Water Reservoir with Target-Priority Operation , 2000, Ann. Oper. Res..

[29]  C. Revelle,et al.  The Linear Decision Rule in Reservoir Management and Design: 1, Development of the Stochastic Model , 1969 .

[30]  René Henrion,et al.  On probabilistic constraints induced by rectangular sets and multivariate normal distributions , 2010, Math. Methods Oper. Res..

[31]  Abdel Lisser,et al.  A second-order cone programming approach for linear programs with joint probabilistic constraints , 2012, Oper. Res. Lett..

[32]  H. Loáiciga On the use of change constraints in reservoir design and operation modeling , 1988 .

[33]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[34]  J. Stedinger,et al.  Water resource systems planning and analysis , 1981 .

[35]  Claudia A. Sagastizábal,et al.  Risk-averse feasible policies for large-scale multistage stochastic linear programs , 2013, Math. Program..

[36]  Sudip Chattopadhyay A realistic linear decision rule for reservoir management , 1988 .

[37]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[38]  Vincent Guigues,et al.  Robust production management , 2009 .

[39]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[40]  R. Wets,et al.  Stochastic programming , 1989 .