Complex adaptation and system structure

The structural organization of biological systems is one of nature's most fascinating aspects, but its origin and functional role is not yet fully understood. For instance, basic adaptational mechanisms like genetic mutation and Hebbian adaptation seem to be generic and invariant across many species and are, on their own, fairly well investigated and understood. However, it is the organism's structure - the representations these mechanisms act upon - that bears the complex functional effects of these mechanisms. While typical technical approaches to system design require detailed problem models and suffer from the need to explicitly take care of all possible cases, the organization of biological systems seems to induce inherent adaptability, flexibility and robustness. In this discussion paper we address the concept of structured variability, particularly the role of system structure as implementing a certain representation on which basic variational mechanisms act on. The functional adaptability (or search distribution) depends crucially on this representation.

[1]  Gregory S. Hornby,et al.  The advantages of generative grammatical encodings for physical design , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[2]  L. Goddard Information Theory , 1962, Nature.

[3]  P. Schuster,et al.  IR-98-039 / April Continuity in Evolution : On the Nature of Transitions , 1998 .

[4]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.

[5]  S. Rice THE EVOLUTION OF CANALIZATION AND THE BREAKING OF VON BAER'S LAWS: MODELING THE EVOLUTION OF DEVELOPMENT WITH EPISTASIS , 1998, Evolution; international journal of organic evolution.

[6]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[7]  Günter P. Wagner,et al.  Genetic measurement theory of epistatic effects , 2004, Genetica.

[8]  G. Wagner,et al.  Modeling the evolution of genetic architecture: A continuum of alleles model with pairwise AxA epistasis. , 2000, Journal of theoretical biology.

[9]  Jordan B. Pollack,et al.  Evolving L-systems to generate virtual creatures , 2001, Comput. Graph..

[10]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[11]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[12]  F. Eeckman,et al.  Evolution and Biocomputation: Computational Models of Evolution , 1995 .

[13]  Hilla Peretz,et al.  The , 1966 .

[14]  P. Callaerts,et al.  Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. , 1995, Science.

[15]  Przemyslaw Prusinkiewicz,et al.  Lindenmayer Systems, Fractals, and Plants , 1989, Lecture Notes in Biomathematics.

[16]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[17]  Sean H. Rice,et al.  The Evolution of Developmental Interactions: Epistasis, Canalization, and Integration , 2000 .

[18]  Marc Toussaint,et al.  Demonstrating the Evolution of Complex Genetic Representations: An Evolution of Artificial Plants , 2003, GECCO.

[19]  G. Wagner,et al.  A POPULATION GENETIC THEORY OF CANALIZATION , 1997, Evolution; international journal of organic evolution.

[20]  Marc Toussaint Compact representations as a search strategy: Compression EDAs , 2006, Theor. Comput. Sci..

[21]  M. Kimura,et al.  DNA and the neutral theory. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  J. Kaas,et al.  The evolution of the neocortex in mammals: how is phenotypic diversity generated? , 2005, Current Opinion in Neurobiology.

[23]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[24]  M. Wade,et al.  Epistasis and the Evolutionary Process , 2000 .

[25]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[26]  E. Rolls,et al.  Attention, short-term memory, and action selection: A unifying theory , 2005, Progress in Neurobiology.

[27]  Gregory S. Hornby,et al.  Generative representations for evolutionary design automation , 2003 .

[28]  Shun-ichi Amari,et al.  Information geometry on hierarchy of probability distributions , 2001, IEEE Trans. Inf. Theory.

[29]  Shumeet Baluja,et al.  Using Optimal Dependency-Trees for Combinational Optimization , 1997, ICML.

[30]  Claus O. Wilke,et al.  Adaptive evolution on neutral networks , 2001, Bulletin of mathematical biology.

[31]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[32]  G. Wagner,et al.  Epistasis and the mutation load: a measurement-theoretical approach. , 2001, Genetics.

[33]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[34]  David E. Goldberg,et al.  Linkage Problem, Distribution Estimation, and Bayesian Networks , 2000, Evolutionary Computation.

[35]  Karl Steinbuch,et al.  Die Lernmatrix , 2004, Kybernetik.

[36]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[37]  G. Wagner,et al.  Modeling genetic architecture: a multilinear theory of gene interaction. , 2001, Theoretical population biology.

[38]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[39]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  Peter J. Angeline,et al.  Evolutionary Module Acquisition , 1993 .

[41]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation I: General Formalism , 2000, Genetic Programming and Evolvable Machines.

[42]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[43]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[44]  Marc Toussaint Factorial representations to generate arbitrary search distributions , 2005, GECCO '05.

[45]  Lee Altenberg,et al.  Evolving better representations through selective genome growth , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[46]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[47]  A. Wagner DOES EVOLUTIONARY PLASTICITY EVOLVE? , 1996, Evolution; international journal of organic evolution.

[48]  Lee Altenberg,et al.  Genome Growth and the Evolution of the Genotype-Phenotype Map , 1995, Evolution and Biocomputation.

[49]  R. Riedl A Systems-Analytical Approach to Macro-Evolutionary Phenomena , 1977, The Quarterly Review of Biology.

[50]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[51]  J. Pollack,et al.  A computational model of symbiotic composition in evolutionary transitions. , 2003, Bio Systems.

[52]  M. Mahner,et al.  What exactly are genomes, genotypes and phenotypes? And what about phenomes? , 1997, Journal of theoretical biology.

[53]  Marc Toussaint,et al.  On the Evolution of Phenotypic Exploration Distributions , 2002, FOGA.

[54]  M. Huynen,et al.  Neutral evolution of mutational robustness. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Dana H. Ballard,et al.  Genetic Programming with Adaptive Representations , 1994 .

[56]  Edwin D. de Jong,et al.  Representation Development from Pareto-Coevolution , 2003, GECCO.

[57]  Peter Nordin,et al.  Complexity Compression and Evolution , 1995, ICGA.